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RESUMEN 
En este trabajo se describe el diseño del control para un sistema 

dinámico SISO discretizado utilizando Matlab®, Simulink® y el 

Arduino Due. Se creó una plataforma que puede ser usada con 

fines educativos y de investigación. Se describen los componentes 

de hardware, software y control. Se presenta la forma en que se 

implementó el algoritmo de control corriendo en un sistema digital 

embebido. La variable a controlar es medida con osciloscopio y se 

discuten los compromisos entre la constante de tiempo del sistema 

con la tasa de muestreo. El diseño del sistema de control esta 

escrito en código de Matlab, Simulink y está implementado en el 

Arduino Due. Se presenta el modelo matemático y se analiza el 

comportamiento de la respuesta temporal y de estado estable. La 

aportación del proyecto es la posibilidad de alcanzar un mayor 

entendimiento del comportamiento del algoritmo de control e 

implementarlo en una infraestructura digital. 

Palabras Clave: Control digital, espacio de estados, Arduino Due.  

 

ABSTRACT 
This paper describes the control design for a discretized dynamic 

system using Matlab®, Simulink®, and Arduino Due. A flexible 

platform was created that can be used for educational and 

research purposes. Hardware, software and control components 

are described throughout this document. The way in which the 

control algorithm runs in an embedded digital system is shown. 

The variable to be controlled is measured with an oscilloscope and 

the commitments between system’s time constant and sampling 

rate are discussed. Control system design is written in Matlab code 

& Simulink and is deployed in Arduino Due. The mathematical 

model is presented, and temporal response behavior is analyzed. 

The main contribution of this project is the achieving of a greater 

understanding of control algorithms and the possibility of 

implement them in a digital infrastructure. 

Keywords: Digital control, space state, Arduino Due. 

 

1. INTRODUCCION 
Control engineering is a multidisciplinary area of knowledge in 

which systems require to comply with performance 

specifications such as speed of reaction of a variable of interest. 

In recent years due to the availability of low-cost digital 

computers the use of digital controllers has increased in control 

systems. The flexibility in control programs is the main 

advantage of digital control systems. 

In digital control systems their dynamics can be described 

through a difference equation that depends on discrete time k, 

when numerical values of all its coefficients are provided. 

State space representation implies a mathematical model of an 

n order discretized dynamic system described through a set of 

inputs, states variables and outputs related by n first-order 

difference equations which are chained to form a matrix 

structure. 

Pole assignment control technique, among others reported in 

[1-7], requires the closed-loop transfer function poles allocation 

to a desired location that will meet some design requirement, 

but most of other works do not dedicate too much effort to 

implement algorithms on a digital platform. 

This article describes the design procedure and report 

experiences gained during its construction and implementation. 

It contributes mainly with a detailed description of the system 

design and how a very accessible platform as the Arduino Due 

is used to implement real-time control algorithms. 

Analysis was assisted using mathematical software, electronic 

circuit simulators, analog and digital computers; measurements 

were done in oscilloscope to verify mathematical results. 

Digital controller design experimentation was done through 

pole placement technique with several discretized custom 

analog plants designed by using operational amplifiers to 

generate an oscilloscope easy-to-see response. Dynamic 

systems are discretized under state space model, a desired 

response specification is defined, and a controller was designed 

with Matlab & Simulink and was implemented in a digital 

system such as the Arduino Due. 

Plants are defined as first and second order; they were 

characterized by their step input test response as time constant, 

overshoot and settling time. 

The original response is obtained by injecting a step signal into 

a space state represented system, then the system response is 

tested with an analytically designed compensator by using 

Matlab and Simulink, then a code for Arduino Due was written 

to observe its real-time behavior in an oscilloscope. 

After the discrete pole placement controller was designed, it 

also was modified to be able to precisely follow the input, and 

was programmed in the Arduino Due development platform. 

 

2. SYSTEM MODEL 
Three illustrative dynamic systems were created, two of them 

were second order and the other was the first order one, in table 

1 the dynamic systems specifications are shown. 

Table 1. The dynamic systems specifications 

System 
Original 

Specification 

Wanted 

specification 

S1 

2nd Order 
𝑡𝑠 = 5 𝑚𝑠 

𝑀𝑝 = 40% 

𝑡𝑠 = 5 𝑚𝑠 

𝑀𝑝 = 24% 

S2 
2nd Order 

𝑡𝑠 = 1.6𝑚𝑠 

Mp=45% 
𝑡𝑠 = 1𝑚𝑠 

Mp=20% 

S3 

1ft Order 
τ = 1𝑚𝑠 
ess=50% 

𝑡𝑠 = 2.2𝑚𝑠 

Mp=16% 
ess=0 
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Following is described the way in which the S1 system was 

design, the others were made similarly. 

 

2.1 Determination of the S1 system plant 
A 2nd order analog plant containing the required specifications 

proposed in table 1 was design. 

At the beginning it must have 5 milliseconds of settling time 

and 40% of overshoot as shown in equations (1) and (2) 
𝑡𝑠 = 0.005                  (1) 

𝑀𝑝 = 40%                             (2) 

Later, 2nd order closed loop system is represented in the form 

of equation (3)  
𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛
2
               (3) 

This type of system has a wide variety of responses depending 

on parameters: 𝜉, the damping ratio and 𝜔𝑛, the natural 

frequency. 

The system’s characteristic equation is shown in equation (4) 
𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛

2 = 0              (4) 

To determine the damping ratio and the natural frequency, 

which characterize this particular second order system, a series 

of mathematical calculations were done. 

First the constant time 𝜏 is determined throughout the ts value, 

and then 𝜎 is obtained. 

𝜏 =
𝑡𝑠

4
=

5𝑚𝑠

4
= 1.2 𝑚𝑠                     (5) 

𝜎 =
1

𝜏
= 833.333                             (6) 

The damped frequency 𝜔𝑑 is a function of the overshoot and is 

given by equation (7) 

𝜔𝑑 =
−𝜎

ln(
𝑀𝑝

100
)

  𝜋 =
−833.33

ln(
40

100
)

  𝜋  = 2857.1536              (7) 

Angle 𝛽 is determined by equation (8) as follows 

𝛽 = 𝑡𝑔−1 (
𝜔𝑑

𝜎
) = 𝑡𝑔−1 (

2857.1536

833.33
) = 73.7399𝑜  (8) 

Later the value of the damping ratio 𝜉 is determined 
 𝜉 = cos 𝛽 = cos  (73.74°) = 0.2799              (9) 

Following the natural frequency is calculated. 

 𝜔𝑛 =
𝜔𝑑

√1−𝜉2
=

2857.1536

√1−0.27992
= 2976.1112                 (10) 

After all values are substituted to reach a plant transfer function 

with a unit feedback as shown in equation (11) 

 𝐺𝑝(𝑠) =
𝜔𝑛

2

𝑠(𝑠+2𝜉𝜔𝑛)
=

(2976)2

𝑠(𝑠+1666)
                        (11) 

 

2.2 Plant electronic design 
Following the procedure performed to determine the value of 

electronic components to be used for voltage transient response 

as specified by the S1 system against a square signal by using 

operational amplifiers is shown. 

To start equation (11) breaks down so that it is expressed as the 

product of a pole at the origin and another outside the origin as 

in equation (12) 

𝐺𝑝(𝑠) =
(2976)2

𝑠2+1666𝑠
=

(2976)2

𝑠
∗ 

1

𝑠+1666
     (12) 

Equation (13) is used as the part of pole at origin, this is an 

integration operation. 
𝐶1(𝑠)

𝐸1(𝑠)
=

1

C1
R1
1

=
1

R1C1s
                      (13) 

The stage of pole outside origin is obtained with equation (14) 

𝐶2(𝑠)

𝐶1(𝑠)
=

R3
R3C2+1

R2
1

=
R3

R2(R3C2+1)
      (14) 

After a series of algebraic manipulations, the plant’s resistors 

and capacitors are shown in Figure 1. Full analog control 

feedback system is also observed. 

 
Figure 1. Plant with unit feedback  

Figure 2 shows the response obtained with Proteus simulation 

against step input. 

 
Figure 2 Response of plant to step input in Proteus 

Shown in figure 2 is the response (in blue) for 1V step input (in 

red), it has an 1.41V overshoot, meaning 41% more than the 

input value, very close to the 40% used for the plant design 

seen in equation (2) as well as the settling time that, according 

to equation (1), it shall be 5 msec, which in figure 2 is observed 

that is the precise time when the system started to stabilize. 

Subsequently an electronic circuit was made, to which a train of 

square pulses were applied as the step input. In figure 3 and 4 

the measurement carried out in the oscilloscope with an 

overshoot that can be seen, it is slightly more than 40% higher 

than the input signal and a settling time of 5ms. 

 
Figure 3 Settling time in phisical plant. 
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Figure 4 Overshoot in oscilloscope 

Finally table 2 shows the gotten temporary specifications and 

the transfer functions for the three designed analog systems. 

Table 2. Dynamic system specifications. 

System specification 
𝐶(𝑠)

𝑅(𝑠)
 

S1 
𝑡𝑠 = 5 𝑚𝑠 

𝑀𝑝 = 40% 

(2976)2

𝑠2 + 1666𝑠 + 29762
 

S2 
𝑡𝑠 = 1.6𝑚𝑠 

Mp=45% 
103𝑥106

𝑠2 + 5000𝑠 + 103𝑥106
 

S3 
τ = 1𝑚𝑠 
ess=50% 

1000

𝑠 + 2000
 

It´s worth to mentioning that for the S3 system it was necessary 

to include an extra pole with transfer function 
10000

𝑠+10000
 in order 

to make S3 a 2nd order system without changing its original 

characteristics. 

 

3. SYSTEM DISCRETIZATION 
The Arduino Due is where the digital control system will be 

implemented, making operations of sampler & data-hold (ADC 

& DAC), it will perform difference equations which are the 

discrete version of differential equations of the analog version. 

 

3.1 State space 
Next, the discretization of the analog system of equation (11) in 

state space form is shown. 

First it begins from the plant’s transfer function 

Gp(s) =
29762

s(s+1666)
=

Y(s)

U(s)
            (15) 

The continuous state equations are found. 
ℒ−1{29762U(s) = s2Y(s) + 1666sY(s)}                  (16) 

ÿ(t) = −1666ẏ(t) + 29762u(t)   

The phase variables x1 and x2 are defined 
x1(t) = y(t)     (17) 

ẋ1(t) = ẏ(t)                                     
x2(t) = ẋ1(t) = ẏ(t)     (18) 

ẋ2(t) = ẍ1(t) = ÿ(t)                               

ẋ1(t) = 0x1(t) + 1        x2(t) − 0         u(t)                  (19) 

ẋ2(t) = 0x1(t) − 1666x2(t) + 29762u(t)             (20) 

y(t)   = 1x1(t) + 0        x2(t)    (21) 

With this, it is obtained the continuous state equations in matrix 

form with phase variables [4]. 

[
x1

x2
] = [

0 1
0 −1666

] [
x1

x2
] + [

0
29762] 𝑢     y = [1 0] [

x1

x2
]       (22) 

 

Where [
0 1
0 −1666

] is Ac and [
0

29762] is Bc 

The continuous-time state-transition matrix is obtained [5,6]. 
𝚽C(t) = ℒ−1{[s𝐈 − 𝐀C]−1}     (23) 

            = ℒ−1 {[[
s 0
0 s

] − [
0 1
0 −1666

]]

−1

}  

            = ℒ−1 {[[
s −1
0 s + 1666

]]

−1

}  

            = ℒ−1 {
1

s(s+1666)−0
[
s + 1666 1

0 s
]}  

            = ℒ−1 {[

1

s

1

s(s+1666)

0
1

(s+1666)

]}                    

            = ℒ−1 {[

1

s

1

1666s
−

1

1666(s+1666)

0
1

(s+1666)

]}                  

            = [
1

1

1666
−

e−1666t

1666

0 e−1666t
]                        (24)      

Arrays A and B are obtained, that is, discrete state equations for 

the sampled-data system. For A, t is replace by T=0.00012, the 

sampling period used, which is 11.6 times smaller than the time 

constant of the system (τ), fulfilling sampling theorem. 

𝐀 = 𝚽C(T)|T=.00012 = [
1

1

1666
−

e−1666T

1666

0 e−1666T 
]|

T=.00012

= [
1 0.000108766
0 0.8187963

] (25)     

To obtain the discreet array B it is integrated from 0 to T with 

respect to τ. 

𝐁 = [∫ ΦC(τ) dτ
T

0
] BC = [

∫ 1
𝑇

0
𝑑𝜏 ∫ (

1

1666
+

e−1666τ

2775556
)

𝑇

0
𝑑𝜏

0 ∫ (
e−1666τ

1666
)

𝑇

0
𝑑𝜏

] [
0

29762]    (26) 

𝐁 = [0.00012  6.74283x10−9

0 0.000108766
] [

0
29762] = [

0.0597184
963.294

] (27) 

With the same continuous and discrete matrices  𝐂 = 𝐂𝑐  D= 𝐃𝒄 

With this, discrete state equations are obtained 

𝐱(k + 1) = [
1 0.000108766
0 0.8187963

] 𝐱(k) + [
0.0597184

963.294
] u(k)   

y(k) = [1 0]𝐱(k)         (28) 

Now it is wished to make a control by pole placement for the 

prior representation with the following equation. 
𝐱(k + 1) = (𝐀 − 𝐁𝐤)𝐱(k) + 𝐁u(k)  y(k) = [1 0]𝐱(k)     (29) 

First 𝐀p is obtained 

𝐀p = (𝐀 − 𝐁𝐤) = [
1 0.000108766
0 0.8187963

] − [
0.0597184

963.294
] [k1 k2]  

      = [
1 − 0.0597184k1 0.000108766 − 0.0597184k2

−963.294k1 0.8187963 − 963.294k2
]     (30) 

Next the characteristic equation is obtained as a function of k1 

and k2 by using the determinant of the rest of z by the identity 

matrix with the 𝐴𝑝 matrix obtained. 

|z𝐈 − 𝐀p| = 0      (31) 

|[
z 0
0 z

] − [
1 − 0.0597184k1 0.000108766 − 0.0597184k2

−963.294k1 0.8187963 − 963.294k2
]| = 0  (32) 

z2 + (0.0597184k1 + 963.294k2 − 1.8188)z + 0.0558764k1 −
963.294k2 + 0.818796 = 0     (33) 

Values 1 and 0 for 𝑘1 and 𝑘2 are assumed respectively to 

produce a unit feedback. 
k1 = 1, k2 = 0                              (34) 

To obtain the following state equation  

𝐱(k + 1) = [
0.9403 0.000108766

−963.2940 0.8187963
] 𝐱(k) + [

0.0597184
963.294

] u(k)  (35) 
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Figure 5 shows the comparison between the response of the 

analog system and its discrete version. 

 
Figure 5 Analog vs. discrete 

 

3.2 Pole placement 
It is desired to reduce Mp=24% and ts=4.8msec so, it’s required 

to have 
ξdeseado = 0.4121    τdeseado = 0.0014   (36) 

The new pole ratio is calculated for the τ wished. 
r = e−T/τ   r = e−0.00012/0.0014 = 0.917864    (37) 

The new pole angle is calculated for the wished ξ and τ   

θ = √
ln2 r

ξ
− ln2 r θ = √

ln2 0.917864

0.4121  
− ln2 0.917864 = 0.189376  (38) 

Once the desired complex conjugate poles are obtained z1,2 in 

polar format it is transformed to its rectangular format. 
z1,2 = 0.917864∠ ± 0.189376rad = 0.901456 ± 0.172777i  (39)  

Then the desired poles become a characteristic equation. 
z2 − 1.80291z + 0.842475 = 0    (40) 
It is resolved by the direct method, substituting the desired 

values of equation (40) in equation (33) to obtain the values of 

𝑘1 and  𝑘2 [6].  
0.0597184k1 + 963.294k2 − 1.8188 = −1.80291  

0.0558764k1 − 963.294k2 + 0.818796 = 0.842475  

k1 = 0.342308   k2 = −4.72552 ∗ 10−6   (41) 

The system is built in Simulink with these values as shown in 

Figure 6. 

 
Figure 6 Discrete space state block diagram 

Well known is the effect on the steady state error when using 

pole placement controller, so it will be eliminated by scheme of 

equation (42) which allow it to follow the input [6,7]. 

[
𝐀 − 𝐈 𝐁

𝐂 0
] [

𝐆
𝐆𝐩

] = [
0
𝐈

]          (42) 

[
[
1 0.000108766
0 0.8187963

] − [
1 0
0 1

] [
0.0597184

963.294
]

[1 0] 0
] [

G1

G2

Gp

] = [
0
0
1

]        (43) 

[
0 0.000108766 0.0597184
0 −0.1812037 963.294
1 0 0

] [

G1

G2

Gp

] = [
0
0
1

]         (44) 

Finding [
G1

G2

Gp

] inverting the first array 

[

G1

G2

Gp

] = [
0 0.000108766 0.0597184
0 −0.1812037 963.294
1 0 0

]

−1

[
0
0
1

] =

[
0 0 1

8333037 −0.516618 0
1.56758 0 0

] [
0
0
1

] = [
1
0
0

]     (45) 

With this, 𝐆 and Gp are obtained 

𝐆 = [
G1

G2
] = [

1
0

]  Gp = 0         (46) 

Gains producing zero steady-state error are obtained and 

replaced in the next state equation 
𝐱(k + 1) = [𝐀 − 𝐁𝐤]𝐱(k) + 𝐁[Gp + 𝐤𝐆]u(k)    (47) 

𝐀 − 𝐁𝐤 =

[
1 − 0.0597184(0.342308 ) 0.000108766 − 0.0597184(−4.72552 ∗ 10−6)

−963.294(0.342308 ) 0.8187963 − 963.294(−4.72552 ∗ 10−6)
] =   

𝐀 − 𝐁𝐤 = [
0.979558 0.000109048
−329.743 0.823348

]    (48) 

𝐁[Gp + 𝐤𝐆] = [
0.0597184

963.294
] [0 + [0.342308 −4.72552 ∗ 10−6] [

1
0

]] (49) 

𝐁[Gp + 𝐤𝐆] = [
0.0597184

963.294
] [0 + 0.342308]           (70) 

𝐱(k + 1) = [
0.979558 0.000109048
−329.743 0.823348

] 𝐱(k) + [
0.0204421

329.743
] u(k)  

y(k) = [1 0]𝐱(k)              (71) 

The system is built in Simulink with these 𝐆 and Gp values as 

shown in Figure 7. 

 
Figure 7 System with G and Gp values 

In figure 8 Simulink output is shown with the steady-state error 

corrected. 

 
Figure 8 Simulink response 

In figure 9 the comparison between the system without control 

(black), with the settling time and overshoot corrected (red) and 

with the steady-state error corrected (blue). 
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Figure 9 Compensated and uncompensated response 

 

3.3 Arduino program 
The Arduino Due has 12 bits resolution in ADCs and DACs, 

DueTimer library with 8 temporization channels and integer 

and floating point number processing capacity of, that allow it 

to implement the sampler & zero-order-hold of the data 

acquisition system, also the comparator and compensator. 

Below is the code used in the Arduino program to perform the 

controller by the pole placement procedure and the internal 

plant also build into the microprocessor. 

In the following line the library “DueTimer.h” is imported, 

which allows the user to use the Arduino Due timers. 
#include <DueTimer.h> 

Port A0 is declared in the Analogico0 variable, which will be 

used later to make ADC conversions. 
const int Analogico0=0;        

Variable declaration of usec contains time unit in 

microseconds. 
const int usec=1000000; 

Square signal generator parameters are declared.  
volatile int amplitude=1024; 
volatile int offset=1250; 
volatile bool flag=false; 

In the following lines the discrete time k and the input r are 

declared. 
int k; 
volatile int r; 

Statement of the times that will be used in the timers Tr (1/2 of 

the period of the input signal r) and Td (sampling period) 
int Tr=.01*usec; 
int Td=.00012*usec; 

In the following lines the coefficients of plant state equation are 

declared, as well as gains K, G1, G2 and Gp that will be the 

values that control the plant. 
volatile float u=0; 
volatile float x1=0,x2=0; 
volatile float A[N][N]={ 1,0.108766E-3,0,0.8187963 }; 
volatile float B[N][1]={ 0.0597184,963.294 }; 
volatile float C[1][N]={1,0}; 
volatile float D=0; 
volatile float y=0; 

Gain declarations of K, G1, G2 and Gp. 
volatile float K[1][N]={0.342308,-4.72552E-6 }; 
volatile float G[N][1]={1,0}; 
volatile float Gp=0; 

The following subroutine generates a square wave signal (step 

input) with amplitude declared previously. 
void SetPoint() 
{ 
    if (!flag) r=-amplitude; 
    else r=amplitude; 
        analogWrite(DAC0,r+offset); 
    flag=!flag; 
} 

In the following subroutine all the plant operations are done 

and the controller through states equations. 
void Dynamic() 
{ 

It is stored in the input variable u the result of control 

operations. 
    u=Gp*r+K[0][0]*(G[0][0]*r-x1)+K[0][1]*(G[1][0]*r-x2); 

Calculation of state variable value x1 
    x1= A[0][0]*x1 + A[0][1]*x2 + B[0][0]*u; 

Calculation of state variable value x2 
    x2= A[1][0]*x1 + A[1][1]*x2 + B[1][0]*u; 

Output value calculation 
    y = C[0][0]*x1 + C[0][1]*x2; 

Through DAC1 the controlled plant result is sent out (y value). 
    analogWrite(DAC1,int(y)+offset);} 

In the next subroutine the parameters required to execute the 

program are initialized. 
void setup() 
{ 

DAC0 and DAC1 are declared as outputs and Analogico0 as 

input. 
    pinMode(DAC0,OUTPUT); 
    pinMode(DAC1,OUTPUT); 
    pinMode(Analogico0,INPUT); 

DACs and ADCs are assigned with 12 bits of resolution.       
    analogReadResolution(12); 
    analogWriteResolution(12); 
    analogReference(eAnalogReference(DEFAULT)); 

In the following lines the subroutine that is going to be working 

with each timer will be assigned, as well as the time 

corresponding to each one. 
    Timer4.attachInterrupt(SetPoint); 
    Timer5.attachInterrupt(Dynamic); 
    Timer4.start(Tr);  
    Timer5.start(Td); 
} 

This subroutine will be executed while the program is running. 
void loop() 
{ 
    delay(200);  
} 

Figure 10 shows the capture in oscilloscope for the zero steady-

state error pole placement compensator; there it can be seen the 

performance of compensated plant. 
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Figure 10 Oscilloscope view of controlled plant. 

 

4. RESULTS 
Below are the results obtained with three different dynamic 

systems S1, S2 and S3 which the control was applied to. The 

controller was carried out in order to improve the response of 

the original system, controller coefficients were obtained in 

Matlab & Simulink and were used in the Arduino. Table 3 

shows the results obtained in order to compare the values of 

each one of them. 

Table 3 Results in Matlab® and Arduino 

SYSTEM 
MATLAB® ARDUINO 

MP% ts(mseg) MP% ts(mseg) 

S1 24 4.92 24 4.92 

S2 20 0.95 22 1 

S3 16 2.2 16 2.2 

 

5. CONCLUSIONS 
A design and implementation of a control scheme was 

developed in which a variety of tools were used: mathematics, 

electronics and programming in order to make that the 

mathematical function containing the plant complies with the 

desired specification thanks to the designated controller gains. 

This work involved the construction of three OpAmps circuits, 

as well as codes in Matlab, Simulink and Arduino. 
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