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RESUMEN. 
En este artículo se proponen y discuten tres métodos para calcular 

la transformada de Hilbert con el fin de identificar y caracterizar 

el comportamiento dinámico no lineal y no estacionario de la señal 

del sistema de potencia en tiempo real mediante su frecuencia 

instantánea. 

Los enfoques se basan en la transformada de Hilbert-Huang 

(HHT), que emplea la descomposición empírica modal (EMD) y la 

transformada de Hilbert (HT) en la señal analítica para estimar la 

frecuencia instantánea. 

El objetivo de este estudio es calcular la transformada de Hilbert 

de una señal real buscando minimizar los errores inicial y final de 

la serie de datos de la señal del sistema de potencia para obtener 

una óptima estimación de la frecuencia instantánea. 

Se emplean datos recolectados de un sistema interconectado. Se 

proporciona la comparación de los resultados numéricos 

obtenidos por los métodos propuestos con el fin de determinar el 

enfoque óptimo. 

 

Palabras Clave: señal de potencia, transformada de Hilbert-

Huang, convolución, frecuencia instantánea.  

 

ABSTRACT. 
In this paper three different methods for computing the Hilbert 

transform are proposed and discussed with the purpose of the 

identification and characterization of the nonlinear and non-

stationary dynamic behavior of real-time power system signal 

through its instantaneous frequency.  

The approaches are based on the Hilbert-Huang transform 

(HHT), which employs the empirical mode decomposition (EMD) 

and Hilbert transform (HT) in the analytic signal to estimate the 

instantaneous frequency.  

The objective of this study is the computing the Hilbert transform 

of a real signal and with the development of these methods to 

minimize the error in the initial and the end of the data-time of 

power system signal to get a optimal estimation of the 

instantaneous frequency. 

Field data, collected at an interconnected power system are used 

in this comparative analysis. The comparison of numerical results 

obtained by the proposed methods is provided for determinate the 

optimal approach. 

 

Keywords: power signal, Hilbert-Huang transform, convolution, 

instantaneous frequency. 

 

1. INTRODUCTION 
Identification and characterization of nonlinear and non-

stationary signals in the field of the power system dynamics 

has been a great development in recent times [1-3]. 

Disturbances presented during the operation of an electric 

power system appear as nonlinear and non-stationary 

phenomena and knowing their behavior is possible to 

implement control actions.  

The Hilbert-Huang transform (HHT), method introduced by 

Huang et al (1998) [9], is a technique effective in decomposing 

time-series data nonlinear and non-stationary and is a great tool 

for this study. When transient phenomena occur, is possible to 

realize a precise analysis on the dynamic behavior of measured 

data. This method analyzes complex temporal dynamics on a 

real-time basis.  

The HHT of a real signal is decomposing in several intrinsic 

mode functions (IMFs), which has particular physical meaning 

and each of these IMFs is a simple oscillatory signal. When the 

original signal is decomposed into a set of IMFs, the Hilbert 

transform is applied to each component to define the 

instantaneous characteristics: amplitude, phase and frequency. 

When computing data of the instantaneous characteristics of 

each IMF the estimation of instantaneous frequency depends 

largely on the method used to compute the Hilbert transform 

because it produces mistakes at the extremes of data recording 

and the estimated values are unreliable. Mistakes are 

manifested as fluctuations and they comprise a poor 

performance in the instantaneous feature analyzed [4]. 

The three methods are focused in the implementation of the 

Hilbert transform in power signal for the estimation of 

instantaneous frequency. These methods are: the Time-domain 

approach, the Frequency-domain approach (Fourier method) 

and the Convolution method. They propose changes in the 

implementation of the Hilbert transform to get a best estimation 

itself. 

The aim of this work is to obtain the best approximation of the 

Hilbert transform and thus gain a better estimation of the 

instantaneous frequency eliminating the mistakes in the 

extremes of data recording. A case of study is presented to 

illustrate the results of the application of the different methods 

proposed. 
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2. THEORICAL FRAMEWORK 
The power system signals are multi-components, nonlinear and 

non-stationary and require to be decomposed in mono-

component signals with a simple mode of oscillation for her 

analysis. Therefore is required to use the Hilbert-Huang 

transform. 

The Hilbert-Huang transform is a time-frequency 

representation method composed by two steps, the first step is 

the empirical mode decomposition, and the second step is the 

Hilbert transform. The methods proposed a modification 

performed in the second step for to compute the Hilbert 

transform of an input signal, the results are compared and an 

efficient estimation is obtained. 

HHT is a powerful method for time-frequency analysis of 

nonlinear and non-stationary data [7]. It is based on an adaptive 

basis, and the frequency is defined through the Hilbert 

transform. The comparisons with traditional methods as 

Fourier shows that the HHT allows the analysis of nonlinear 

and non-stationary signals. 

 

2.1. Empirical mode decomposition (EMD). 
The empirical mode decomposition (EMD) technique is a 

systematic method for numerically decomposing any time 

equally spaced time series, )(tx  into its own intrinsic mode 

functions, i.e. the IMFs. 

The purpose of this method is to decompose multi-component, 

non-stationary and nonlinear signals into a finite number of 

simple oscillatory signals. Each one of these mono-component 

and oscillatory signals are represented by an Intrinsic Mode 

Function (IMF). An IMF is defined as a time series which 

satisfies three critical requirements: 

a) In the whole data set, the number of extrema and the 

number of zero-crossing must either equal or differ at most by 

one. 

b) At any point, the mean value of the envelope defined 

by the local maxima and the envelope defined by the local 

minima is zero.  

c)  The linear superposition of all IMFs should reconstruct 

the time series. 

The IMFs are obtained through a progressive sifting process 

with cubic spline interpolation and its algorithm for decompose 

a signal )(tx   into IMFs is as follows: 

1. Starting with the original signal )(tx , set )()(0 txtr   , 

and  1j . 

2. Extract the jth IMF using the sifting procedure 

a. Set )()(0 trth j   and  1i  . 

b. Identify all extrema of )(tx   for )(0 th . 

c. Interpolate between maxima (minima) to obtain an 

envelope )(max te   )(min te  . 

d. Compute the running mean of the envelopes 

  2/)()()(
11 minmax1 tetetm

iii 
 , and substract it from 

)(1 thi ; determine a new estimate )()()( 11 tmthth iii   , 

such that )()()(
11 maxmin tethte

ii i 
  for all t . Set 

1 ii  

The step 2(d) is then repeated until )(thi  satisfies a 

predetermined stopping criterion, and the first IMF component 

from the data is called )()( thtc ii  . 

3. Obtain an improved residue )()()( 1 tctrtr jjj   . Repeat 

steps 2(a) through 2(d) with 1 jj  until the number of 

extremes in )(tr j  is less than two. 

The sifting process has two purposes: to eliminate riding waves 

and to make the wave-profiles more symmetric. 

This method is intuitive, direct, a posteriori and adaptive, with 

the basis of the decomposition based on, and derived from, the 

data. 

Each IMF involves only one mode of oscillation, where the 

first component (IMF1) contain the highest frequency 

oscillation; the frequency content then decrease with the 

increase in IMF and the last component is the residue ( )(trn ). 

The stopping criterion of the sifting process is given by the 

residue )(trn , becomes a monotonic function from which no 

more IMF can be extracted, or can still be different from zero 

mean. 

Finally, the signal )(tx is written as the sum: 

                       



n

j

njj trtctx
1

)()()(                          (1) 

where n is the total number of IMFs and )(trn  is the non-

oscillatory residual at the end of the sifting process. 

We can rewrite the signal )(tx  in the form 

      
 


p

j

n

pk

nkj

n

j

njj trtctctrtctx
1 11

)()()()()()(       (2) 

where the terms )(tc j  contain the physical behavior of 

interest, and the remaining n-p terms contain uninteresting non-

sinusoidal characteristics. 

When )(tx  is decomposed into a set of IMFs, the Hilbert 

transform is applied to each component to define the 

instantaneous characteristics: amplitude, phase and frequency. 

 

2.2. The Hilbert Transform (HT). 
Once the EMD technique has been applied to decompose the 

input signal into a set of IMFs and a residual signal, one may 
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now analyze the components to extract instantaneous 

amplitude, phase and frequency information. 

The Hilbert transform (HT) of a signal )(tx  is defined as [5] 




 
 






d

t

x
Ptc j

)(1
)(~ 

in which P  indicates the Cauchy principal value. 
Application of the HT to the jth IMF yields the complex trace 

representation or analytic signal, )(tz j
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)()(~)()( )(
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where )(tA j
, )(tj , and )(tj  are the instantaneous value of 

amplitude or envelope, phase and frequency of jth  IMF, 

respectively. 

Through equation (3) in its polar form, it is possible to 

define the instantaneous characteristics  
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


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which are calculated as functions of time and can therefore be 

related to all temporal events during the measurement. 

The Hilbert transform is usually computed in the frequency-

domain through the Fourier transform according to the 

convolution theorem [8]. From equation (3), the Hilbert 

transform can be rewritten in the form of a convolution, or a 

linear filter as 


t

tctc jj


1
)()(~  

where t1  is the kernel of the transformation. 

 

2.3. Local energy of IMFs. 

The instantaneous amplitude )(tA j  and instantaneous 

frequency )(tj  derived from the IMFs through the Hilbert 

transform can give us a full energy-frequency-time distribution 

of the data. The local energy of jth IMF is given by 

                                       )(
2

1
)( 2 tAtE jj                             (7) 

Therefore, the IMF with most energy will be the IMF dominant 

and the IMF with less energy is the residue. 

 

3. DESCRIPTION OF PROPOSED APPROACHES. 
Existing approaches to the numerical calculation of the Hilbert 

transform are based on the computation of the analytic signal 

using the Fourier transform and are not well adapted for 

estimation of instantaneous characteristics of a real signal 

producing numerical errors in the computing of instantaneous 

parameters in the initial and end data points. 

This study presents and contrasts three methods for computing 

the Hilbert transform of arbitrary signals. These are: a time-

domain approach, a frequency-domain approach based on 

Fourier analysis and a convolution-based method. 

 

3.1. Method I: Frequency-domain approach. 
The Hilbert transform is usually computed in the frequency-

domain through the Fourier transform according to the 

convolution theorem. The Hilbert transform can be considered 

as the convolution given by (6). 

This representation of the Hilbert transform as a convolution 

leads to an alternative way to compute the Hilbert transform in 

the frequency domain via Fourier transform. 

The definition of Cauchy principal value in the time domain is 

difficult to calculate, so the Hilbert transform in the frequency-

domain is defined. Assume )( fX  and )(ˆ fX  are the Fourier 

transform of )(tx  and )(ˆ tx , then )( fX  and )(ˆ fX  are 

defined by 

                   




 dtetxfX tj)()(  ;  f 2           (8) 

                          )()sgn()(ˆ fXfjfX                      (9) 

where f   is called Fourier frequency with units 1/units of the 

independent variable. The signum function is defined by 

                 

















.0,1

,0,0

,0,1

)sgn(

ffor

ffor

ffor

f                    (10) 

and the operator )sgn(fj does not change the amplitude 

spectrum, but only all spectral components of the original 

signal are shifted by  2/  or 90-degrees. 

Applying the Fourier transform to the convolution in 

equation (6), we obtained the Hilbert transform in the 

frequency domain given by 

    )()sgn()(/1)(ˆ)(ˆ  jYjjYtFTtyFTjY      (11) 

 where FT is the Fourier transform.  

Assume kx a real signal, its HT kx̂  can be computed using 

the fast Fourier transform (FFT) techniques as 

 

         kk xFFTjFFTx )sgn(ˆ 1  
                    (12) 

where FFT  is the fast Fourier transform, 
1FFT is the 

inverse fast Fourier transform,   is the nth frequency of the 

discrete Fourier transform, and sgn  is the sign function. 
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Therefore the Hilbert transform is a 2/  phase shifter 

when observed as a linear system whose input is kx and output 

is kx̂ . 

3.2. Method II: Time-domain approach. 

Consider a real signal )(tx . Assume further that the signal 

)(tx  has been sampled every t  second to give the sequence 

),( tkxxk   nk ,...,3,2,1  and that the Hilbert transform 

signal )(ˆ kx  can be computed. If the signal  )(tx  is assumed 

to vary linearly during the sampling interval [ t  to tn ], its  

Hilbert transform at time t  can be written as [10] 
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The results given in [9] relative to numerical computation are 
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We observed that 
)( f

iI and (17), 
)(c

kI  and (18) are exactly the 

same, but 
)(r

iI is different from (19). This equation does 

influence the result of the Hilbert transform of a signal. 

 

3.3. Method III: Convolution method. 
In this method we consider complex sequences for which the 

real and imaginary components of analytic signal can be related 

through a convolution. These Hilbert transform relations are 

particularly useful in representing bandpass signals as complex 

signals. 

The estimate Hilbert transformer of an analytic signal was 

obtained by performing a filtering operation on the analytic 

signal itself. The integral of Cauchy given by equation (3) can 

be rewritten in the form of a convolution as 

                         



L

Ll

ri lhlnxnx )()()(                           

(20) 

where (20) is the desired Hilbert transform of the imaginary 

part of a discrete-time analytic signal. L indicate the order of 

filter and its maximum order is given by 

                               1 NimfL                                        

(21) 

where Nimf indicates the total number of IMFs, including the 

residue )(tr . The filtering process eliminates the residue to 

avoid the mistake in the initial and end data points of 

recording.  

The filter with the desired features which has the impulse 

response )(nh  of a 90-degree phase shifter is given by 

Oppenheimer and Schafer [6] as 
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or 
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
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,0
)2(sin2
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2

n

n
n

n
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

                       

(23) 

The real signal is decomposed in mono-component signals and 

on the IMF than contain the highest frequency oscillation is 

applied the convolution method for to have an estimation of its 

Hilbert transform. In this study 1L  in (20) provided an 

adequate amplitude response and perfect 90-degree phase 

response. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
The three methods are assessed into an oscillatory electric 

power signal. Figure 1 shows the temporal behavior of an 
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active power signal, in which is considered a time step of 0.05s 

and the data set consist of 1217 data points corresponding to 

60.8s of record data with a nonlinear and non-stationary 

dynamic evolution. 

In the course of the evaluation, the empirical mode 

decomposition was applied to the power signal to obtain the 

IMFs using the shifting method described in the previous 

section and each IMF has a particular physical interpretation.  

These IMFs are then employed to extract the time-varying 

amplitude and frequency of the intrinsic oscillations modes in 

the critical system. 

 
Figure 1. Active power flow of the signal under study. 

 

Figure 2 shows the results of the application of the EMD 

method for to obtain the IMFs and residue of the signal under 

study. Is observed that the amplitude of each IMF varies, and 

more particularly the amplitude of IMF4 is much greater than 

others IMFs.  

This is checked and observed in Table 1, where the energy 

level of IMF4 represents 95.3% of the total energy of the 

original signal. Therefore the IMF4 is the dominant IMF with 

the highest oscillation frequency. It is noted that IMF1, IMF2 

and IMF3 are pseudo-components named noise and can be 

filtered to reconstruct the signal. 

 
Figure 2. The whole set of IMFs and residue of the power signal 

 
TABLE 1. Energy of each IMF 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 Residue 

0.004 0.002 0.001 0.953 0.018 0.009 0.007 0.006 

 

The instantaneous amplitude of the first five IMFs estimated 

with the three proposed approaches are observed in figure 3, in 

which verifies that the dominant IMF is the IMF4, which is an 

unstable oscillation.  

 
Figure 3. Instantaneous amplitude A(t) estimate of the first five IMFs. 

 

The instantaneous amplitude of IMF4 is compared with the 

three methods in the whole data point in the upper panel of 

figure 4, in the middle of same figure is observed the initial 

data point only, in which the best estimation of this 

instantaneous attribute is made with the Convolution method. 

In Addition, in the bottom of figure 4 shows the end data point 

and is demonstrated that the best estimation is the Convolution 

method because it has fewer fluctuations and peak values. The 

Time-domain approach and the Convolution method are very 

similar in the whole data-time and the Frequency-domain 

becomes similar to the others only between the 752.5 and 798 

seconds in the time range.  

The instantaneous frequency of IMF4 is estimated by the three 

methods and is shown in figure 5. The amplitude of 

instantaneous frequency of IMF4 increases in time and suggest 

the presence of strong frequency modulation.  

The Time-domain approach produce a great oscillation in the 

initial data points (see figure 5b), in the end data points (see 

figure 5c) and produce important differences with the others 

methods proposed. These mentioned oscillations are different 

from the fluctuations in the time recording of instantaneous 

frequency, which indicate nonlinear effects into the nature of 

the oscillations.  

The Convolution method provides a better estimate because it 

has not great peaks at the initial and end points of whole data. 

The Frequency-domain becomes similar to the other methods 

between the 740.15 and 800.65 seconds in the time range. 

To implement the convolution filter, the residue of IMFs is 
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removed and the error in the initial and end data points in the 

recording is eliminate. 

 The representation of instantaneous amplitude and frequency 

calculated in the power system the Hilbert transformer via 

Convolution method have most accuracy that a filter of second 

or major order approximation. 

 
Figure 4.instantaneous amplitude A(t) of IMF4 

Top: whole data. Middle: initial data. Bottom: end data. 

 

 
                                                              (a) 

 
                                  (b)                                                 (c) 

Figure 5. The instantaneous frequency of IMF4 derived from three methods 

proposed:  (a) whole data, (b) initial data, (c) end data. 

Compared with the Time-domain approach and the Frequency-

domain, the Convolution method is an efficient approach to 

compute the Hilbert transform of a real power, where the 

maximum error between the approximation and the desired 

instantaneous frequency is minimized. 

 

5. CONCLUSIONS 
Three different methods for computation of the Hilbert 

transform have been presented and discussed. The approaches 

to the numerical calculation of the Hilbert transform are based 

on the computation of the analytic signal in nonlinear and non-

stationary power system signals and the comparison is made on 

the instantaneous frequency of an oscillatory signal. 

As demonstrated in this study, Convolution method is the most 

feasible way to obtain reliable dynamic behaviour of the 

system, whose nonlinear and non-stationary oscillations over 

all the data-time, require precise and accurate analysis to 

determine the instantaneous characteristics, mainly in the 

estimation of the instantaneous frequency. In this approach, 

filtering operation on the analytic signal eliminates noise and 

fluctuations in the initial and end data points and allows us to 

obtain a more accurate estimate of the instantaneous frequency 

during the analysis of the dynamics of the system under study. 

Given the goods results obtained in this study, the method is 

expected to have various applications in dynamic analysis, 

including the determination of instability and the online 

assessment of damping. In addition, analysis can yield 

instantaneous parameters accurate enough to use in monitoring 

schemes online. 
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