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RESUMEN  
Para las redes neurales los algoritmos de aprendizaje involucran  

procesamiento intensivo en CPU y se han desarrollado 

implementaciones paralelas para reducir el tiempo de 

aprendizaje. Este artículo propone un esquema paralelo para el 

algoritmo de retro propagación, este consiste de una 

arquitectura del sistema distribuida, la cual desarrolla el 

entrenamiento paralelo mediante la partición de patrones. Esta 

implementación está basada en la estructura parfor de Matlab, la 

cual explota una clase de paralelismo inherente a las redes 

neurales alimentadas hacia adelante entrenadas con retro 

propagación, llamada paralelismo de tareas. Bajo este desarrollo, 

los cambios en los pesos son calculados concurrentemente, 

intercambiados entre Workers y ajustados apropiadamente hasta 

que el proceso de aprendizaje se completa. Se muestra el diseño 

de un soporte distribuido para aprendizaje paralelo de redes 

neurales usando el método de partición de patrones, resultados 

teóricos y experimentales de aceleración son analizados. 

Palabras clave:Retro propagación paralela, partición de patrones, 

parfor de Matlab. 

ABSTRACT  
In neural networks, learning algorithms engage CPU intensive 

processing and parallel implementations which can lead to 

reduce learning time. In this paper, a parallel scheme for a back 

propagation algorithm is proposed; it consists of Matlab´s 

distributed system architecture, which develops a parallel 

training with a partition pattern scheme. This implementation is 

based on the Matlab´s parfor structure, which exploits a kind of 

parallelism inherent in back propagation feed forward, layered 

neural networks, namely task parallelism. Under this approach, 

weight changes are computed concurrently, exchanged between 

Workers and adjusted accordingly until the whole parallel 

learning process is completed. This article shows the design of a 

distributed support for parallel learning of neural networks 

using a pattern partitioning approach. Results on speedup 

theoretically and experimentally are shown.  

Keywords: Parallelized back propagation, pattern partitioning, 

Matlab’s parfor. 

1. INTRODUCTION 
Feed forward neural networks (FFNN) are extensively used to 

solve complex problems in pattern classification, system 

modeling and identification, among other things. One of the 

characteristics of the FFNN is its learning (or training) ability. 

Learning is the adjustment process of the neural network to 

external stimuli. By training, the neural network can give 

correct answers not only for learned examples, but also for the 

inputs similar to the learned examples, showing its strong 

associative and rational ability, which are suitable for solving 

large, nonlinear problems with complex classification, some 

others require function approximation. These properties are 

attained during a slow learning process. The standard method 

for training FFNN is the back propagation (BP) algorithm 

which is based on the gradient descent optimization 

technique. Despite the general success of this algorithm it may 

converge to a local minimum of the mean squared-error 

objective function and requires a large number of learning 

iterations to adjust the weights of the FFNN. 

Many approaches to speed up the training process have been 

devised by means of parallelism [1]-[7]. To parallelize BP 

either the network or the training pattern space is partitioned 

[4], and run in parallel into a multi-core processors computer 

or across a computer multi-node cluster connected via a 

communication network [8]. 

Parallel programming using supercomputers is not available 

for everyone, and the use of separated tools as 

C++/FORTRAN and MPI libraries is not easy, without 

mentioning that creating parallel code in these languages takes 

a long time [9]. To lessen this problem, Matlab offers an 

integrated development tool for parallel computing, allowing 

solving complex problems efficiently [10]. 

In pattern partitioning the whole neural net is replicated in 

different Workers (the Matlab’s parallel processing unit) and 

the weight changes due to distinct training patterns are 

parallelized [2]. As a result, this parallel model creates and 

trains a separate network for each pattern in parallel. The 

interconnection weights are updated by an amount based on 

the total weight change summed over all networks. This 

technique exploits task parallelism as well as architectural 

parallelism of the back propagation neural network algorithm. 

The paper describes the development of a parellel back 

propagation algorithm, referred to as the PBP, and its 

implementation on Matlab’s parfor parallel structure, also 

discusses its classification correctness, the PBP algorithm´s 

speedup factor into the distributed Matlab implementation, 

and a Gigaflops performance benchmark. 

2. FEED FORWARD NEURAL NETWORK 
The network will be applied to solve a 26-class pattern 

classification problem, one for each letter of the alphabet. It 

involves classifying each input pattern into one of R=26 

possible classes. The data set consists of P=26 patterns; each 
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pattern of N=35 values, which is defined by a 5x7 bitmap of a 

letter, for training. Each pattern has N=35 values which can 

either be 1 or 0. Figure 1 shows one input pattern. 

 
Fig. 1. One pattern of the total 26 alphabet, each consist of a 

letter in a 5x7 bitmap. 

Let the node numbers of input and hidden layer be N and M, 

respectively. The node number of the output layer is defined 

as R. The pattern space contains a total number of P patterns. 

The whole synapses (interconnections) are given by (N+1) 

(M+1) + (M+1) (R+1) = 2268. Figure 2 shows a three layer FF 

network. The weight connected to the input with value one (1) 

included in all the layers of the FFNN represents the offset of 

the network. The implementation in this paper allows growing 

the number of hidden layers as wished, that´s why always the 

output of one layer includes a one (1), which will be used as 

offset for the next one. 

 
Fig. 2. Architecture and nomenclature of the Feed Forward 

Neural Network 

𝑋𝑖
𝑝
 is the i

th
 inputs for the p

th
 pattern to the input NN layer, i 

varies from 1 to N+1, therefore the size of X is P (N+1). 

𝑋𝑖
𝑝

= [
1 ⋯ 0
⋮ ⋱ ⋮
1 ⋯ 1

    
    
    

0 ⋯ 1
⋮ ⋱ ⋮
0 ⋯ 0

]

𝑃(𝑁+1)

          (1) 

Where 𝑣𝑖𝑗
𝑝

 represents the p
th

 pattern to the first NN weight 

stage, i varies from 1 to N+1 and j does from 1 to M+1, 

therefore the size of v is P(N+1) (M+1) and initially is 

initialized with small random values. 

𝑣𝑖𝑗
𝑝

= [
8.8050 ⋯ . 00081

⋮ ⋱ ⋮
0 ⋯ . 00013

]

(𝑁+1)(𝑀+1)

          (2) 

The offset weight 8.8050 is in position 𝑣11
𝑝

, (equation 2), the 

other elements in the first columns are zero. The value of 𝑣11
𝑝

 

is assigned in this way in order to obtain a value one as output 

in the next layer when the activation function in this layer is 

applied, see section 2.1. 

The stimulus to the hidden layer is calculated as 

𝑧𝑖𝑛𝑗

𝑝
= ∑ 𝑋𝑖

𝑝
𝑣𝑖𝑗

𝑝𝑁+1
𝑖=1              (3) 

We also analyze the time complexity for the evaluation of the 

hidden layer. Since the time taken to perform a floating point 

multiplication is the main indication of the time required by 

the feed forward procedure, we estimate the size of such 

operation to be the matrix multiplication of eq. 3, complexity 

is calculated in eq. 4. 

𝑂1(𝑃(𝑁 + 1)(𝑀 + 1))                     (4) 

Activation function in the hidden layer is applied. 

𝑍𝑗
𝑝

= 𝑓(𝑧𝑖𝑛𝑗

𝑝
)              (5) 

𝑓(𝑧𝑖𝑛𝑗

𝑝
) is the activation function of the hidden layer. 

𝑍𝑗
𝑝

 is the j
th

 value for the p
th

 pattern of the hidden NN layer, j 

varies from 1 to M+1, therefore the size of Z is P (M+1). 

𝑍𝑗
𝑝

= [
1 ⋯ 0
⋮ ⋱ ⋮
1 ⋯ 1

    
    
    

0 ⋯ 1
⋮ ⋱ ⋮
0 ⋯ 0

]

𝑃(𝑀+1)

          (6) 

𝑤𝑗𝑘
𝑝

 represents the p
th

 pattern of the output NN weight layer, j 

varies from 1 to M+1 and k does from 1 to R+1, therefore the 

size of w is P (M+1) (R+1) and initially it is initialized with 

small random values. 

𝑤𝑗𝑘
𝑝

= [
8.8050 ⋯ . 00008

⋮ ⋱ ⋮
0 ⋯ . 00057

]

(𝑀+1)(𝑅+1)

          (7) 

The offset weight 𝑤11
𝑝

 of the hidden layer is in eq. (7), the 

other values in the first column are zero. 

The stimulus to the output layer is calculated as 

𝑦𝑖𝑛𝑘

𝑝
= ∑ 𝑍𝑗

𝑝
𝑤𝑗𝑘

𝑝𝑀+1
𝑗=1                     (8) 

Its complexity also is determined by the matrix multiplication 

of eq. 8. 

𝑂2(𝑃(𝑅 + 1)(𝑀 + 1))                    (9) 

Activation function in the output layer 

𝑌𝑘
𝑝

= 𝑓(𝑦𝑖𝑛𝑘

𝑝
)            (10) 

𝑓(𝑦𝑖𝑛𝑘

𝑝
) is the activation function of the output layer. 

𝑌𝑘
𝑝

 is the actual output of the k
th

 neuron for the p
th

 training 

pattern, there is a R+1 column vector for each pattern P, for Y. 

𝑌𝑘
𝑝

= [
1 ⋯ 0
⋮ ⋱ ⋮
1 ⋯ 1

    
    
    

0 ⋯ 1
⋮ ⋱ ⋮
0 ⋯ 0

]

𝑃(𝑅+1)

        (11) 

𝑇𝑘
𝑝
 is the desired target of the k

th
 neuron for the p

th
 training 

pattern, there is a R+1 vector for all the patterns P, for T. 

𝑇𝑘
𝑝

= [
1 ⋯ 0
⋮ ⋱ ⋮
1 ⋯ 1

    
    
    

0 ⋯ 1
⋮ ⋱ ⋮
0 ⋯ 0

]

𝑃(𝑅+1)

        (12) 
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2.1 Activation Function 
The activation function can be a linear or non-linear function. 

In this project the binary sigmoid function was used, as 

described in [3]. 

It must be analytical, continuous, differentiable, 

monotonically increasing, with an easy-to-calculate 

derivative. The function should be bounded, this is, 

approximate to a finite asymptotic minimum and maximum. 

A binary sigmoid equation is defined as shown in eq. 13. 

𝑌𝑘
𝑝

= 𝑓(𝑦𝑖𝑛𝑘

𝑝
) =

1

1+𝑒
−𝑦

𝑖𝑛𝑘

𝑝                       (13) 

Where 𝑦𝑖𝑛𝑘

𝑝
 is the slope of the binary sigmoid function.  

In Section 3, it´s chosen the weights 𝑤𝑗𝑘
𝑝

 in such an optimal 

way that the outputs 𝑌𝑘
𝑝

 tends to targets 𝑇𝑘
𝑝
. 

3. BACKPROPAGATION ALGORITHM AND TIME 
COMPLEXITY ANALYSIS 
A forward propagation of stimuli and a backward propagation 

(BP) of error are the two parts which the BP algorithm for 

FFNN training procedure is divided for. 

The back propagation algorithm attempts to find a minimum 

for the total squared error defined for one training pattern at 

the time. So, in BP, an input pattern is presented to the 

network. Based on that pattern, the network computes an 

output pattern. The output result is compared to a desired 

pattern and an error vector is computed. The error is back 

propagated through the network; based on the amount of 

inaccuracy passing through each connection, the weights are 

changed. After that, the next pattern is presented to the 

network and this procedure is repeated for the new one. 

3.1 A neuron in the hidden layer 
The output values of the output layer are compared with the 

target output values. The target output values are those that 

we attempt to teach to our network. The error between actual 

output values and target output values is calculated and 

propagated back towards the hidden layer. This is called the 

backward pass of the back propagation algorithm. The error is 

used to update the connection strengths between nodes, this is, 

weight matrices between input-hidden layers (𝑣𝑖𝑗
𝑝

) and hidden-

output layers (𝑤𝑗𝑘
𝑝

) are updated. See Figure 3. 

 
Fig. 3. Error determination 

Then, the error function for this step of training is 

𝑒𝑘
𝑝

= 𝑇𝑘
𝑝

− 𝑌𝑘
𝑝
            (14) 

The overall square error function is 

𝐸𝑝 =
1

2
∑ 𝑒𝑘

𝑝 2
𝑘                                                     (15) 

The back propagation algorithm attempts to find a minimum 

for the total squared error defined for the whole training 

pattern. The weights are updated as stated in the following 

Section. 

3.2 Gradient Descent 
The gradient descent is a method (used in BP algorithm) that 

tries to minimize the error function by choosing the 

appropriated 𝑣𝑖𝑗  weights. 

The weight update is obtained at time t, by the Delta rule. 

𝑣𝑖𝑗(𝑡) = 𝑣𝑖𝑗(𝑡 − 1) + ∆𝑣𝑖𝑗          (16) 

Where ∆𝑣𝑖𝑗 = −𝛼 ∑
𝜕𝐸𝑝

𝜕𝑣𝑖𝑗

𝑃
𝑝=1           (17) 

With α being the learning rate, it is a positive constant with 

range 0 < α < 1. 

By the chain rule, eq. 17 can be written as eq. 18. 

∆𝑣𝑖𝑗 = −𝛼 ∑ ∑
𝜕𝐸𝑝

𝜕𝑒𝑘
𝑝𝑘  

𝜕𝑒𝑘
𝑝

𝜕𝑌𝑘
𝑝  

𝜕𝑌𝑘
𝑝

𝜕𝑦
𝑖𝑛𝑘

𝑝  
𝜕𝑦𝑖𝑛𝑘

𝑝

𝜕𝑣
𝑖𝑗
𝑝

𝑃
𝑝=1         (18) 

After doing some substitutions, the following is obtained. 

     ∆𝑣𝑖𝑗 = 𝛼 ∑ ∑ (𝑇𝑘
𝑝

− 𝑌𝑘
𝑝

)𝑓′ (𝑦𝑖𝑛𝑘

𝑝
) 𝑤𝑗𝑘

𝑝
𝑓′ (𝑧𝑖𝑛𝑗

𝑝
) 𝑋𝑖

𝑝
𝑘

𝑃
𝑝=1   (19) 

The definition of Sigma Out is in eq. (20). 

𝛿𝑘
𝑝

= (𝑇𝑘
𝑝

− 𝑌𝑘
𝑝

)𝑓′ (𝑦𝑖𝑛𝑘

𝑝
)           (20) 

∆𝑣𝑖𝑗 = 𝛼 ∑ ∑ 𝛿𝑘
𝑝

𝑤𝑗𝑘
𝑝

𝑓′ (𝑧𝑖𝑛𝑗

𝑝
) 𝑋𝑖

𝑝
𝑘

𝑃
𝑝=1         (21) 

Defining Sigma Hidden in eq. 22. 

𝛿𝑗
𝑝

= ∑ 𝛿𝑘
𝑝

𝑤𝑗𝑘
𝑝

𝑓′ (𝑧𝑖𝑛𝑗

𝑝
)𝑘            (22) 

Eq. (22) is another matrix multiplication with complexity. 

𝑂3(𝑃(𝑅 + 1)(𝑀 + 1))          (23) 

∆𝑣𝑖𝑗 = 𝛼 ∑ 𝛿𝑗
𝑝

𝑋𝑖
𝑝𝑃

𝑝=1            (24) 

The complexity of eq. (24) is 

𝑂4(𝑃(𝑁 + 1)(𝑀 + 1))                 (25) 

Putting all together 

∆𝑣𝑖𝑗 = 𝛼 ∑ ∑ (𝑇𝑘
𝑝

− 𝑌𝑘
𝑝

)𝑘
𝑃
𝑝=1 𝑌𝑘

𝑝
(1 − 𝑌𝑘

𝑝
) …  

            … 𝑤𝑗𝑘
𝑝

𝑍𝑗
𝑝

(1 − 𝑍𝑗
𝑝

) 𝑋𝑖
𝑝
         (26) 

Nodes in the hidden layer are organized in such a way that 

different nodes recognize different features of the total 

training space, this happens during the progression of the 

training. After training, when a new input pattern is supplied, 

units in the hidden layer will generate active outputs if such 

an input pattern preserves the features they (individually) 

learned. Conversely, if such an input pattern does not contain 

those known features then these units will be inclined to 

inhibit their outputs. 

3.3 A neuron in the output layer 
The output is contrasted against the desired target and an error 

value is computed as a function of the outcome error in each 

output unit. This makes up the forward phase. 

The error for each unit of the output layer is. 

𝐸𝑝 =
1

2
𝑒𝑘

𝑝 2
           (27) 
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𝑒𝑘
𝑝

= 𝑇𝑘
𝑝

− 𝑌𝑘
𝑝
           (28) 

Using the Delta rule 

𝑤𝑗𝑘(𝑡) = 𝑤𝑗𝑘(𝑡 − 1) + ∆𝑤𝑗𝑘          (29) 

Weight change for the output layer 

∆𝑤𝑗𝑘 = −𝛼 ∑
𝜕𝐸𝑝

𝜕𝑤
𝑗𝑘
𝑝

𝑃
𝑝=1                                (30) 

∆𝑤𝑗𝑘 = −𝛼 ∑
𝜕𝐸𝑝

𝜕𝑒𝑘
𝑝  

𝜕𝑒𝑘
𝑝

𝜕𝑌𝑘
𝑝  

𝜕𝑌𝑘
𝑝

𝜕𝑦
𝑖𝑛𝑘

𝑝  
𝜕𝑦𝑖𝑛𝑘

𝑝

𝜕𝑤
𝑗𝑘
𝑝

𝑃
𝑝=1                    (31) 

∆𝑤𝑗𝑘 = 𝛼 ∑ (𝑇𝑘
𝑝

− 𝑌𝑘
𝑝

)𝑓′ (𝑦𝑖𝑛𝑘

𝑝
) 𝑍𝑗

𝑝𝑃
𝑝=1                   (32) 

𝛿𝑘
𝑝

= (𝑇𝑘
𝑝

− 𝑌𝑘
𝑝

)𝑓′ (𝑦𝑖𝑛𝑘

𝑝
)           (33) 

∆𝑤𝑗𝑘 = 𝛼 ∑ 𝛿𝑘
𝑝

𝑍𝑗
𝑝𝑃

𝑝=1                                             (34) 

Considering the matrix multiplication of eq. (34). 

𝑂5(𝑃(𝑀 + 1)(𝑅 + 1))                 (35) 

Putting all together 

∆𝑤𝑗𝑘 = 𝛼 ∑ (𝑇𝑘
𝑝

− 𝑌𝑘
𝑝

)𝑌𝑘
𝑝

(1 − 𝑌𝑘
𝑝

)𝑍𝑗
𝑝𝑃

𝑝=1             (36) 

The net will find an internal representation which enables it to 

generate appropriate responses when those patterns used 

during training are subsequently submitted to the network and 

secondly, the network will classify them according to the 

features they share (resemblance) with the training patterns. 

The complexity of the back propagation algorithm is the 

addition from 𝑂1 to 𝑂5. 

𝑂 (𝑃(𝑀 + 1)(2(𝑁 + 1) + 3(𝑅 + 1)))                (37) 

The learning process includes adjusting of weights 

(adaptation) in the network in order to minimize the error 

function. For this reason, the error obtained is propagated 

back from each node of the output layer to the corresponding 

(contributors) nodes of the intermediate layer. However each 

of these intermediate units receives only a portion of the total 

error according to its relative contribution to the current 

output. This process is repeated from one layer to the previous 

one until each node in the network receives an error signal 

describing its relative contribution to the total error. Based on 

this signal, weights are corrected in a proportion directly 

related to the error in the connected units. This makes up the 

backward phase. 

4. PARALLEL BACKPROPAGATION BY PATTERN 
PARTITIONING 
Pattern partitioning replicates the neural net structure (units, 

activation function and associated weights) is used by the 

parallel version of the BP algorithm at each Worker because 

there is no data dependency between the operations performed 

for different patterns; the training set is equally distributed 

among Workers. Each Worker performs the propagation and 

the adaptation phases for its local set of patterns 

simultaneously. Therefore, it is possible to simulate more than 

one network at a time and train each one with a different input 

pattern, in parallel. The networks are stored in a Matlab’s Cell 

data type. These networks all have the same initial random 

weights and, some input patterns to learn. The weight changes 

are performed in parallel, after the completion of each local 

training pattern, they are added together when all the patterns 

in the training set were presented, the weights are updated, 

based on the total weight change computed. These weight 

changes are accumulated by using a special parfor 

accumulator parallel structure of the Matlab´s Parallel 

Computer Toolbox [8], which contains several high level 

programming structures that allow the applications to benefit 

from a distributed systems. The structures include the parallel 

for (parfor), thus, it simplifies the development of parallel 

code, eliminating the complexity of computing and data 

managing between Matlab session and the computational 

resources that are being used. 

parfor is a structure that can automatically distribute 

independent tasks to multiple Matlab’s Workers [11]. 

The Matlab client schedules the parfor, it coordinates the 

Workers contained in the parallel pool in such a way that the 

iterations of loops can run in parallel in the pool. The 

necessary data which the parfor operates are sent from the 

client to the Workers and the results are sent back to the client 

in pieces that come together. 

Learning is accelerated organizing different patterns into 

independent tasks (work units) and running multiple tasks 

concurrently. These kinds of procedures with parallel tasks 

are consistent with the pattern partitioning technique of FFNN 

used in this project, essentially the equations of Sections 2-3. 

The time used to process the whole learning process by the 

distributed system ideally will be approximately ts/W, where ts 

is the time taken by the serial algorithm for the P training set 

and W is the total number of Workers. 

5. PARALLEL BACKPROPAGATION ALGORITHM 
PERFORMANCE 
In this section a brief description of the underlying system 

architecture and procedures supporting the parallel learning 

process is presented, running on the Workers distributed in a 

computer cluster. Each Worker is allocated for a replicated 

neural network. 

The network is simulated by W=24 Workers, which is the size 

of the cores in the distributed system. These 24 Workers, 

emulate 500 epochs of the 35-35-26 input-hidden-output 

neurons of the network for each of the P=26 patterns. It is 

important to keep in mind that the degree of parallelism 

achieved depends on the number of Workers assigned to the 

network, and the number of patterns in the training set, as well 

as parallel resources of the machine. For example, the 26-

class problem has P=26 patterns in its training set and the 

total number of Workers assigned for the network is W=24. 

 

5.1 Parallel learning, hardware and software support 
In any parallel machine, the degree of parallelism is limited 

for the physical parallel resources of the machine. 

The features of the six computers connected on the cluster are: 

Processor INTEL i7 4770 3.4 GHz, 4 cores and 8 threads 

8 GB RAM SDRAM DDR3-1600 scalable to 32 GB 

Hard Disk 500 GB SATA 

MATLAB R2015a 

The Admin center [12] was configured with six computers in 

the cluster, each with four cores, with a total of W=24 
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5.2 Testing the Neural Network 
The network should not only recognize perfectly formed 

letters (training data set), but also noisy versions of the letters 

(testing data set). Figure 4 shows a noisy version of one of the 

letters. Values are limited to fall between 0 and 1. 

 
Fig. 4. Noisy version of one of the 26 patterns. 

 

The weights obtained by the training samples can now be 

evaluated with the testing samples. This will be useful as a 

sense of how well the network will do when applied to data 

obtained from a noisy source. 

A confusion matrix (Figure 5) is a measure of how well the 

neural network has fit across all the noisy samples; it shows 

the percentages of correct and incorrect classifications. 

Correct classifications are the green squares on the matrices 

diagonal and incorrect classifications form the pink squares. 

Because the network has learned to classify properly, even 

with noisy input, the pink squares are cero and the diagonal 

has 1/27=3.7% each, indicating no misclassifications. 

 

 
Fig. 5. Confusion matrix for the 26 alphabet pattern 

classification problem. 

5.3 Gustafson’s law 
Gustafson´s law determines that with an increased number of 

Workers, bigger problems could be solved, getting better 

results, in the same period of time. 

In Gustafson perspective [13], speedup is scaled (also called 

weak scaling) and represents the time required by the parallel 

computation divided into the time that would be required to 

solve the same problem with a single Worker and allows the 

problem size to be an increasing function of the number of 

Workers. This metric is useful because we usually scale up to 

a cluster to solve larger problems. 

The speedup is based on the total time used for the 

computations, so it includes both the sequential and the 

parallel portions of the code. 

The execution times were obtained with the Matlab tool called 

profiler [12]. 

ts = 0.0763, tp = 0.9237, W = 24 

With ts being the serial execution time, tp is the parallel 

execution time, and W the number of Workers. 

The serial portion of the computation in the parallel system is 

 𝑓 =
𝑡𝑠

𝑡𝑠+
𝑡𝑝

𝑊

= .6647            (38) 

The maximum speedup is defined in the Gustafson’s law as 

 𝜓 ≤ 𝑓 + 𝑊(1 − 𝑓) = 8.7117           (39) 

The Figure 6 shows the experimental speedup vs. the Workers 

involved in the PBP training algorithm and its implied linear 

(ideal) speedup. It also represents the optimal weights 

associated with the desired patterns obtained by the PBP 

training algorithm ran with 500 epochs and an increasing 

amount of Workers used. This performance includes the 

computer hardware and software, the network connection, the 

parallel structures and the algorithm. Therefore, the speedup 

curve represents all of these factors taken together. The 

experimental speedup curve approximately meets with the 

theoretical maximum scaled speedup defined by Gustafson. It 

means that all the previously mentioned factors work well 

together in this particular PBP benchmark. 

 
Fig. 6. Ideal and measured speedup 

 

Another experiment to benchmark the overall performance of 

the whole distributed system was performed. Four networks 

(N1 to N4) were tested, with dimensions that present an 

increment in size, see Table 1. 
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The benchmarking consists of measuring the time taken for all 

the Workers to complete the training of patterns by task 

parallel computations (parfor), employing weak scaling, 

which consists of making the number of iterations 

proportional to the patterns and the number of Workers. 

 

Table 1.Four NN with different sizes 

Network 
Input 

N 

Hidden 

M 

Output 

R 

Patters 

P 

N1 2 4 4 4 

N2 3 8 8 8 

N3 4 16 16 16 

N4 5 32 32 32 

 

It’s used the number of floating point operations per second 

(Flops) as a measure of performance because that allows us to 

compare the performance of the PBP algorithm for different 

training patterns and different number of Workers. 

The PBP has a complexity (number of Gflops) given by eq. 

(40), it is useful to calculate the Gigaflops computed by the 

parallel algorithm. 

𝑂(𝑃(𝑀 + 1)(2(𝑁 + 1) + 3(𝑅 + 1))/𝑊)/1𝑒9   (40) 

Figure 7 shows the Gigaflops processed versus an increasing 

amount of training patterns (associated with Workers), as the 

number of Workers is increased, the problem size is increased 

proportionally. In the case of PBP, the performance of the 

algorithm depends greatly on the pattern’s size. Figure 6 

demonstrate the performance in Gigaflops for all the pattern 

sizes that were tested with and all the different numbers of 

Workers, which gives us the most detailed picture of the 

performance characteristics PBP on this particular cluster. The 

data shown in Figure 7 demonstrates that 32 Workers allow us 

to solve much larger PBP training than is possible with only 4 

Workers. Additionally, it is seen that even when training with 

a PBP with pattern size 32 on 8 Workers (this means, more 

patterns per Worker) it would get a performance of 

approximately only .02 Gigaflops. Thus, even if the 8 

Workers had sufficient resources to solve such problem, 32 

Workers would greatly outperform them. 

 
Fig. 7. Measured Gflops vs training of different patterns 

 

6. CONCLUSIONS 
Implementing neural network algorithms in parallel 

infrastructure is important to training bigger pattern sets in 

significantly shorter time. While the degree of architectural 

parallelism is limited to the size of the largest layer of the 

network, the degree of task parallelism is only limited by the 

number of the Workers and the number of training patterns, 

which are both often far larger than the number of the neurons 

in the largest layer of the network. The back propagation 

algorithm with pattern partitioning implemented with the 

parfor in Matlab’s Parallel Computing Toolbox, presented 

mainly task parallelism, in the way it was parallelized in this 

paper, also it generated the expected theoretical and 

experimental performance; these elements give originality to 

this work in the field of study. The main contribution of this 

work was to organize the whole factors of the parallel 

infrastructure in order to work all properly. Parallel pattern 

partitioning implementations of neural networks training will 

allow us to investigate larger problems which are expected to 

be solved in a shorter period of time. 
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