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RESUMEN 
El artículo presenta una corrección necesaria sobre un algoritmo 

propuesto en la literatura para determinar si un sistema de 

eventos discretos modelado en redes de Petri Interpretadas es 

diagnosticable con el objetivo de detectar la ocurrencia de faltas. 

Lo relevante de este trabajo es que expone el análisis hecho sobre 

el algoritmo y se presenta su implementación en Maple con la 

corrección propuesta.  

 

Palabras clave: Sistema de eventos discretos, Diagnóstico de faltas, 

redes de Petri interpretadas, Maple. 

 

ABSTRACT 
The aim of this paper is to present a modification of a proposed 

algorithm to determine if a discrete event system described by an 

Interpreted Petri net is diagnosable allowing to detect the 

occurrence of faults by an external agent. The relevancy of this 

work is to state the required condition to modify the algorithm, 

present the implementation of the modified algorithm in Maple 

and analyze its functionality. 

 

Keywords: Discrete Event System, Fault diagnosis, Interpreted 

Petri nets, Maple. 

 

1. INTRODUCTION 
Although the systems are designed and implemented to 

exhibit specific performance (characteristics defined by the 

subsystems and their interrelationship) where faults are a 

priori known (unwanted behavior). The occurrence of these 

faults is practically impossible to predict, in the first place 

because they occur asynchronously and in second place they 

can be fired by system exogenous events, leading to 

unspecified system behaviors changing dramatically the 

system performance.  

In general, since all systems are subject to fail in some way, it 

is desirable to have a mechanism or procedure to 

automatically determine when and where a fault has occurred. 

When the faults of a system can be automatically detected, 

then it is said that the system exhibits the diagnosability 

property or that the system is diagnosable. The process used 

to detect and locate faults in a diagnosable system is named 

the fault diagnosis process.  

Fault diagnosis of Discrete Event System (DES) is a research 

area that has received a great attention in the last years and 

has been motivated by the need of ensuring the correct and 

safe operation of large complex systems. The problem of fault 

diagnosis for DES using model-based diagnosis have been 

successfully used in a wide class of technological systems, 

ranging from document processing systems to intelligent 

transportation systems [1]. There exists a lot of literature on 

model-based diagnosis; several representative works use finite 

automaton (FA) or Petri nets (PN) as modeling formalism. 

Although automaton models are suitable for describing DES, 

the use of PN offers significant advantages because of their 

twofold representations: graphical and mathematical [2]. 

Moreover, the intrinsically distributed nature of PN where the 

notion of state (marking) and action (transition) is local 

reduces the computationally complexity involved in solving a 

diagnosis problem. Therefore, PN are considered a suitable 

formal tool to carry out the study of fault diagnosis in DES. 

For example, Ushio et al. in [3] addressed the diagnosis 

approach proposed in [4] and uses the formalism of PN. They 

represent the normal and failure behavior of a system with 

PN. This contribution gave rise to the study of diagnosis 

based on models with PN. Basile and Tommasi in [5] 

presented sufficient conditions for diagnosability of DES 

modeled as PN. It is referred to the concept of diagnosability 

given by Sampath et al. [4]. Then, in [6] the design of an on-

line diagnosis is presented, it defines and solves some 

problems of integer linear programming (ILP). Dotoli et al. in 

[7] proposed a diagnoser that works on-line in order to avoid 

the redesign and the redefinition of the diagnoser when the 

structure of the system changes. The proposed approach is a 

general technique since no assumption is imposed on the 

reachable state set that can be unbounded, and only few 

properties must be fulfilled by the structure of the PN 

modeling the system fault behavior. In [8] it is assumed that 

there exist not unobservable cycles no blocked firing 

sequences after the firing of any faulty transition; necessary 

and sufficient conditions are given for diagnosability based in 

reachability diagnoser. In [9] is proposed a structural 

characterization for faults diagnosis and a reduced diagnoser 

that ensures the fault detection and location in a finite number 

of steps. They used Interpreted PN (IPN) to model the system 

and its faults.  In [10] a new structural diagnosability 

characterization for each of permanent and operational faults 

considering some relationship between conservative parts, 

repetitive parts and siphons are proposed. These studies have 

several advantages over previous work because they perform 

the structural analysis of PN models instead of reachability 

analysis to determine the diagnosability of a DES. In addition, 

they propose on-line diagnosers scheme that are easy to 

implement. Therefore, in this work is analyzed and 

implemented the algorithm (written in Maple) to determine 
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when an IPN exhibits the diagnosability property. It is based 

mainly on the characterization of diagnosability property in 

IPN proposed by [10]. The contributions of this work are; 1) 

the condition required to properly applying the algorithm to 

determine if the IPN is diagnosable and 2) implementation of 

algorithms to detect when an IPN is diagnosable. 

 

The paper is organized as follows: section 2 provides basic 

definitions of DES, PN, and IPN. Section 3 presents the 

theory of fault diagnosis problem. In the section 4 is defined 

and analyzed the algorithm to determine the diagnosability of 

an IPN and besides that its implementation in Maple is shown. 

Finally, in section 5, the conclusion and future work are 

presented. 

 

2. BACKGROUND 
2.1. Discrete Even System 
A DES has the state set naturally described by a discrete set 

like {0, 1, 2,...} and transitions are observed at discrete points 

in time. These state transitions are associated with events.  

Examples of these systems are network systems, distributed 

systems, traffic control systems, manufacturing systems, 

among others [11]. 

 

2.2. Petri nets 
A PN is represented by two kinds of vertices (figure 1): 

circles, represent places (p1,p2,p3), that are associated with 

actions or system outputs to be modeled and bars o rectangles 

(t1,t2,t3,t4) representing transitions, which are associated with 

events and actions or outputs. The input places (output places) 

are places whose arcs lead to (leave to) a transition tj and they 

are considered input (output) of tj. An initial marking (M(p1) 

=1) would be an initial distribution of marks (black dots into 

the places). The presence or absence of a mark in a place can 

indicate whether a condition associated with this place is true 

or false. At any given time, for instance, the distribution of 

marks into places is called PN marking. The marking defines 

the current state of the modeled system.  

 
Fig. 1. Petri net 

The PN works in order to simulate the dynamic behavior of a 

system, the marking in a PN is changed according to the 

following firing rule: a) a transition “t” is said to be enabled if 

each input place “p” of “t” is marked with at least w(p,t) 

tokens, where w(p,t) is the weight of the arc from “p” to “t”, 

b) an enabled transition may or may not fire (depending on 

whether or not the event related with "t" actually takes place), 

and c) the firing of an enabled transition “t” removes w(p,t) 

tokens from each input place “p” of “t”, and adds w(t,p) 

tokens to each output place “p” of “t”, where w(p,t) is the 

weight of the arc from “t” to “p”. The formal definition of PN 

is presented as follows and it is taken from [12].  

 

Definition 1: A Petri Net structure G is a bipartite digraph 

represented by the 4-tuple G=(P,T,I,O) where: 

 P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are finite sets of 

vertices called places and transitions, respectively. 

 I(O) : P × T → Z
+
 is a function representing the weighted 

arcs going from places to transitions (transitions to places); 

Z
+
 is the set of nonnegative integers.   

The symbol •tj denotes the set of all places pi such that I(pi, tj) 

≠ 0 and tj• the set of all places pi such that O(pi, tj) ≠0. 

Analogously, •pi denotes the set of all transitions tj such that 

O(pi, tj) ≠0 and pi• the set of all transitions tj such that I(pi, tj) 

≠0. 

The pre-incidence matrix of G is C
−
 =[cij

−], where cij
−

 =I(pi, tj); 

the post-incidence matrix of G is C
+
=[cij

+], where cij
+ =O(pi, tj); 

the incidence matrix of G is C= C
+
 − C

−
. The marking 

function M:P
−
→ Z

+
 represents the number of marks (depicted 

as dots) residing inside each place. The marking of a PN is 

usually expressed as an n−entry vector. M function can be 

represented as M(p). 

 

Definition 2: A PN is the pair N =(G, M0), where G is a PN 

structure and M0 is an initial token (mark) distribution over 

places. 

 

Definition 3: A P−semiflow Yi (T− semiflow Xi) of a PN is a 

positive integer solution of the equation Yi
T
C = 0 (CXi = 0). 

The support of the P−semiflow Yi (T− semiflow Xi) is the set 

||Yi|| = {pj |Yi(pj) ≠ 0} (||Xi|| = {tj | Xi(tj) ≠ 0}). 

 

Definition 4: The reachability set of N, denoted by R(N, M0), 

is the set of all possible reachable markings from M0, firing 

only enabled transitions. 

 

Definition 5: A PN (N, M0) is k-safe (k-bounded) if for all M 

∈ R(N, M0) and places p є P, M(p) ≤ k. 1 − safe nets are 

simply called safe. 

 

Definition 6: A PN (N, M0) is live if for all Mi ∈ R(N, M0) and 

for all t ∈ T it is true that Э Mj, such that Mi⟶ Mj⟶ . 

 

Definition 7: A siphon is a subset of places S = {p1, ..., ps} ⊆ 

P of a PN such that the set of input transitions •S is contained 

in the set of output transitions S•, i.e., •S ⊂ S •. 

 

2.3. Interpreted Petri net. 
An IPN is an extension of PN based on the input and output 

signals. IPN is a PN that include input and output alphabets 

that are associated with the transitions and places, of PN, 

respectively. An IPN can model the commands sequences 

given by the signals from actuators and sensors each time a 

new state is reached. Graphically, an IPN is presented in 

figure 2. The measurable places {p1, p3} of IPN are 
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transparent circles while the no-measurable place {p2} is a 

dark circle. The formal definition is taken from [12] and it is 

as follows: 

 
Fig. 2. Interpreted Petri net 

 

Definition 8: An IPN is the 4-tuple Q = (G, Σ, λ, φ) where:  

 N = (G, M0) is a PN.  

 Σ = {α1, α2, ..., αr} is the input alphabet of the net, where αi 

is an input symbol. 

 λ : T → Σ ∪ {ε} is a labeling function of transitions with 

the following constraint: ∀tj, tk ∈ T, j ≠ k, if ∀pi I(pi, tj) = 

I(pi, tk) ≠ 0 and both λ(tj) ≠ ε, λ(tk) ≠ε, then λ(tj) ≠ λ(tk). In 

this case ε represents an uncontrollable system event. 

 There exists a q×n matrix φ, such that yk = φMk is mapping 

of the marking Mk into the q−dimensional observation 

vector. Column φ(•, i) is the elementary vector eh if place pi 

has associated the sensor place h; or the null vector if pi has 

no associated sensor place. In this case, an elementary 

vector eh is the q−dimensional vector with all its entries 

equal to zero, except entry h, that it is equal to 1. A null 

vector has all its entries equal to zero. 

Notice that q places have associated a sensor, signal thus they 

are measurable or observable.  

A transition tj є T of an IPN is enabled at marking Mk if ∀pi ∈ 

P, Mk(pi) > I(pi, tj). An enabled transition tj, labeled with a 

symbol other than ε (empty or silent) symbol, must be fired 

when λ(tj) is activated. An enabled transition tj, labelled with a 

ε symbol can be fired. When an enabled transition tj is fired in 

a marking Mk, then a new marking Mk+1 is reached.  This fact 

is represented as Mk 

𝑡𝑗
→Mk+1; Mk+1 can be computed using the 

dynamic part of the state equation represented by (1): 

k 1 k k

k k

M  = M  + Cv

y  = M




                                                        (1)  

 

Definition 9: A firing transition sequence of an IPN (Q, M0) is 

a sequence σ = titj ... such that M0 

𝑡𝑖
→M1

𝑡𝑗
→ ... The set of all 

firing sequence £(Q, M0), is called the firing language of 

(Q,M0). £(Q, M0) ={ σ | σ = titj ... where M0 

𝑡𝑖
→M1

𝑡𝑗
→ ... }. 

 

Definition 10: A sequence of observation vectors (output 

symbols) of (Q, M0) is a sequence ω= (y0) (y1) ... (yn), where 

𝑦𝑘 =  𝑀𝑘 and yi ≠ yi+1. If ω is a sequence of output symbols, 

then the set of firing transition sequences σ ∈ £(Q, M0) whose 

firing generates the output sequence ω is represented by Ω(ω). 

Definition 11: Let (Q, M0) be an IPN. The set Λ(Q, M0) 

denotes all sequences of output symbols of (Q,M0). The set of 

all output sequences of length greater than or equal to k will 

be denoted by Λ
k
 (Q, M0), i.e., Λ

k
 (Q, M0) = {ω ∈ Λ(Q, M0) | 

|ω|≥ k}.  

Definition 12: The set of all output sequences leading to an 

ending marking in the IPN (Q, M0) is denoted by ΛB(Q, M0), 

i.e., ΛB (Q, M0) = {ω ∈ Λ(Q, M0) | ∃σ ∈Ω(ω) such that M0 
𝜔
→Mj and Mj enables no transition, or when Mj enables ti (M0 
𝑡𝑖
→) then C(●, ti) = 0⃗ }. 

3. DIAGNOSIS PROBLEM 
3.1. Diagnosis based on model  
This model represents the diagnosis system (figure 3) and has 

a diagnoser (a monitoring online system whose warns the 

presence of faults) that compares the normal behavior 

(Q
N
,M0

N
) without faults modeled with IPN, with the current 

behavior (Q, M0) of a DES, when there exists a difference 

between these behaviors, then a fault is detected and it can be 

seen as an error (ek) in the DES [12].   

 
Fig. 3. Online diagnosis based on model 

3.2. Event-detectability property 
If the input-output sequences can be detected using only 

output signals (systems sensor outputs) and the structural 

information of the IPN, this net will be called event-

detectable. 

 

Definition 13: An IPN (Q, M0) is event-detectable if the firing 

of any transition can be uniquely determined from knowledge 

of the input and output produced by (Q, M0) [13]. 

 

Definition 14: An IPN (Q, M0) is event-detectable iff ∀σ ∈ 

£(Q, M0), the firing of any pair of transition ti,tj ∈ σ, can be 

distinguished from each other using the information in ω ∈ Λ 

(Q, M0) [13]. 

 

The following lemma gives a polynomial characterization of 

event-detectable IPN that is used to determine if an IPN is 

diagnosable [6]. This means that if an IPN is not event-

detectable it is impossible to know if it can be diagnosable.  

Lemma 1: A live IPN given by (Q, M0) is event detectable 

iff 

 ∀ti, tj ∈ T such that λ(ti) = λ(tj) or λ(ti) = ε it holds that 

φC(•, ti) ≠ φC(•, tj), and 

 ∀tk ∈ T it holds that φC(•, ti) ≠0. 
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3.3. Modeling of faults 
The faults are represented by transitions in the IPN, i.e., it is 

considered that a fault event modeled occurs when a transition 

that is considered a fault is fired according to the rules and 

properties of the PN. The objective is to diagnose the 

occurrence of fault events based on the sequence of observed 

events. Furthermore, the faults that are considered here are 

permanent ones. A permanent fault occurs when a task stops 

its execution while other(s) task(s) can be continued to run in 

the system. 

 

This work deals with systems whose normal behavior model 

(Q
N
, M0

N
) can be represented by a live and safe IPN. Once the 

DES is described by a live and safe IPN, the next step is to 

represent faults into the normal behavior model. This is done 

based on [12]. When a permanent fault occurs, then one task 

is stopped while other concurrent tasks may continue their 

execution. In permanent faults, the involved faulty devices 

will remain in a faulty state until they are repaired. The 

proposed modeling strategy for representing faults is 

straightforward. Consider first the model (Q
N
, M0

N
) that 

describes the normal functioning of the system. Then for 

every place pi
N
 representing an operation at which a fault may 

occur, add an uncontrollable transition tf , a faulty place pi
F
, 

and the arcs (pi
N
, tf ) and (tf , pi

F
). The new faulty place pi

F
 

must be labeled with the same symbol that pi
N
 for stating that 

the fault cannot be detected from the observation of the 

outputs. The obtained model describes both normal and faulty 

behavior as it can see in figure 4. The permanent faults are t
1

pf 

and t
2
pf [12]. 

  
Fig. 4. Normal and faulty behavior of an IPN 

3.4. Diagnosability  
The diagnisability problem consist in determining if a system 

is diagnosable, i.e., if the occurrence of a fault can be detected 

in a finite number of steps, using the input-output system 

information. Following notation and definitions will be useful 

in the diagnosability analysis. 

 

The set of places P of an IPN (Q, M0) is partitioned into two 

subsets, P = P
F
 ∪ P

N
 where P

F
 is the set of places coding 

faulty states, and P
N
 is the set of places coding normal states 

of the IPN. The markings in R(Q, M0) can also be partitioned 

into the following two subsets: F = {M ∈ R(Q, M0) | ∃pk ∈ P
F
 

such that M(pk) > 0, M ∈ R(Q, M0)} and R(Q
N
, M0

N
) = R(Q, 

M0) − F, where F is the set of the faulty markings and R(Q
N
, 

M0
N
) is the set of the normal states. The embedded normal 

behavior IPN (Q
N
, M0

N
) of (Q, M0) is the IPN included in (Q, 

M0) when P
F
 and T

F
 = •P

F
 are not considered. In (Q

N
, M0

N
) the 

set of places is P
N
 = P − P

F
, the set of transitions is T

N
 = T − 

T
F
 and the set of arcs of (Q

N
, M0

N
) is A

N
 = ((P

N 
× T

N
) ∪ (T

N 
× 

P
N
)) ∩ (A), where A = {(pi, tj)|pi ∈ P, tj ∈ T and I(pi, tj) = 

1}∪{(ti, pj)|pi ∈ P, tj ∈ T and O(pi, tj) = 1}. 

 

Definition 16: Let (Q, M0) be an IPN, P
N
 be the normal set of 

places, and T
F
 be the set of faulty transitions of (Q, M0). The 

set of risky places of (Q, M0) is P
R
 = •T

F
. The post-risk 

transition set of (Q, M0) is T
R
 = {P

R
• ∩ T

N
}[13]. 

 

Considering last definition, the next proposition [10] is used 

to determine if a permanent fault can be diagnosable.  

 

Proposition 1: Let (Q, M0) be a safe (Q
N
, M0

N
) that is safe, 

live and strongly-connected. Let ti be a permanent fault, pk be 

a risky place and Sti be the siphon that will be unmarked when 

ti is fired. Assume that | pk•| = 1 and the post-risky transition ta 

∈ pk• and the pre-risky transitions are event detectable. (Q, 

M0) is diagnosable with respect to ti if all the T-semiflows of 

the net contains transitions in •Sti ∪ Sti•. 

 

4. ALGORITHM TO DETECT FAULTS  
4.1. Definition 
Next algorithm is used to diagnose the permanent faults in an 

IPN and is taken from [10]. The inputs are the IPN (Q, M0) 

and (Q
N
, M0

N
) that are live and binary, and the output is the T-

semiflow X that can be fired infinitely often when the 

permanent fault tj occurs.  

 

Algorithm 1 Permanent faults diagnosability of an IPN  

Let pk be the risky place associated to the permanent fault ti, 

Sti={pk}. For each place pi≠pk solve the following Linear 

Programming Problems LPPs: 

𝐿𝑃𝑃1 =

{
  
 

  
 𝑀𝑖𝑛 ∑ 𝑌1(𝑖)

⌈𝑃⌉
𝑖=1

𝑠. 𝑡.
𝑌1
𝑇𝐶 = 0

𝑌1(𝑝𝑘) = 1

𝑌1(𝑝𝑖) = 1

   0 ≤  𝑌1(𝑝𝑟) ≤ 1  }
  
 

  
 

                                                          (2) 

 

Where pi is the current place that is analyzed and pris the rest 

of places. If (2) has no solution then places pi, pk are in 

different minimal P-semiflow, go to label . If (2) has a 

solution then places pi,pk are in the same minimal P-semiflow 

or they are in two different minimal P-semiflows not sharing 

any place. LPP2 will determine which the case is. 

𝐿𝑃𝑃2 =

{
 
 
 

 
 
 𝑀𝑖𝑛 ∑ 𝑌2(𝑖)

⌈𝑃⌉
𝑖=1

𝑠. 𝑡.
𝑌2
𝑇𝐶 = 0

𝑌2(𝑝𝑘) = 0

𝑌2(𝑝𝑖) = 1

   
  0 ≤  𝑌2(𝑝𝑟) ≤ 1

𝑌2(𝑖) ≤ 𝑌1(𝑖) }
 
 
 

 
 
 

                                                          (3) 

 

If (3) has a solution then places pi, pk are in different minimal 

P-semiflows, go to label . If  has no solution then places 



Congr. Int. en Ing. Electrónica. Mem. ELECTRO, Vol. 40, pp. 126- 132, Oct 2018, Chihuahua, Chih. México 
http://electro.itchihuahua.edu.mx/memorias_electro/MemoriaElectro2018.zip 

ISSN 1405-2172 
 

130 

 

pi,pk are in the same minimal P-semiflow. Sti= Sti∪{pi} 

because are in the same minimal P-semiflows.  

Label : end for.  

Thus, the transition set T
ti
= •Sti∪ Sti• contains the transitions 

that will be immediately death if the faulty transition tiis fired.  

Now, LPP3 computes if there exists a T-semiflow not 

containing transitions in T
ti. Let Z(h)=1 if th ∈ T

ti
 and Z(h)=0 

in otherwise.  

𝐿𝑃𝑃3 =

{
  
 

  
 𝑀𝑎𝑥 ∑ 𝑋(𝑖)

⌈𝑇⌉
𝑖=1

𝑠. 𝑡.
𝐶𝑋 = 0

𝑌2(𝑝𝑘) = 0
𝑋′𝑍 = 0

0 ≤  𝑋(ℎ) ≤ 1
   }

  
 

  
 

                                                          (4) 

 

Where 𝑋′ is the transpose of X. According with (4), if X is 

empty then this faulty transition ti will be diagnosable. In the 

algorithm, Sti has the places forming the siphon that will be 

unmarked when the faulty transition ti is fired. For sure that pk 

belongs to the siphon. Thus, LPP1 computes if a place pi 

belongs to the same minimal P-semiflow than pk or if pi 

belongs to a minimal P-semiflow not sharing any place with 

the P-semiflow containing pk. If LPP1 has a solution, then 

LPP2 determines if pi and pk belong to the same P-semmiflow: 

If it is the case then Sti= Sti∪{pi}. When all the places are 

analyzed, then Sti contains all the places belonging to the 

siphon that will be unmarked when ti is fired. Afterwards, 

LPP3 computes a minimal T-semiflow that can be fired 

infinitely often even when ti is fired. Thus, if such T-semiflow 

exists, then ti is not diagnosable. 

 

4.2. Analysis  
To analyze how the previous algorithm works, consider the 

IPN depicted in figure 5 that is live, binary and strongly-

connected. This contains a permanent fault t
1
pf=t6 and the 

risky-place pk=p2, ti=t6 and Sti=p2. It can see that this IPN does 

not possess an indeterminate cycle, so this net must be 

diagnosable. 

 
Fig. 5. IPN live and safe with a permanent fault 

Applying the algorithm above presented, it is executed 

according the number of places of the IPN (for each place 

pi≠pk).  

 

Then, in cycle For LPP1 the objective function is: 

𝑀𝑖𝑛 ∑ 𝑌1(𝑖) = 𝑀𝑖𝑛 (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7)
⌈7⌉
𝑖=1   𝑤ℎ𝑒𝑟𝑒

𝐶 =

|

|

−1 0 0 1 0
1 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 −1 1
0 0 0 1 −1

|

|

 , 𝑌1 =

|

|

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

|

|

 ,

 −𝑦1 + 𝑦2 + 𝑦3 = 0
−𝑦2 + 𝑦4 = 0   
−𝑦3 + 𝑦5 = 0 

𝑦1 − 𝑦4 − 𝑦5 − 𝑦6 + 𝑦7 = 0
𝑦6 − 𝑦7 = 0       

𝐹𝑜𝑟 𝑝𝑖 ≠ 𝑝𝑘 , 𝑝𝑖 = 𝑝1 𝑎𝑛𝑑 𝑝𝑘 = 𝑝2, 𝑌1(𝑦2) = 1 𝑎𝑛𝑑 𝑌1(𝑦1) = 1.

𝑇ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 0 ≤ 𝑌1(𝑝𝑟) ≤ 1, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  0 ≤ 𝑌1(𝑦3) ≤ 1,

 0 ≤ 𝑌1(𝑦4) ≤ 1,0 ≤ 𝑌1(𝑦5) ≤ 1,   0 ≤ 𝑌1(𝑦6) ≤ 1, 0 ≤ 𝑌1(𝑦7) ≤ 1.
𝐼𝑓 𝑦1 = 𝑦2 = 1 → 𝑦3 = 0, 𝑦4 = 1,  𝑦5 = 0, 𝑖𝑓 𝑦6 = 0 →  𝑦7 = 0

𝑡ℎ𝑒𝑛 𝑌1
𝑇 = [1101000] 𝑎𝑛𝑑   

𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 = 3  𝑖. 𝑒 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.  

 

     (5) 

 

Then pi, pk are in the same minimal P-smiflow or they are in 

two different minimal P-semiflow in (5). Now LPP2 will 

determine which the case is. To the cycle For LPP2 in (6), 

𝐘𝟐
𝐓=0 has the same equations than Y1

T=0 in (5) but with the 

following conditions:  

 
𝒀𝟐(𝒚𝟐) = 𝟎 𝒂𝒏𝒅 𝒀𝟏(𝒚𝟏) = 𝟏

𝑻𝒉𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟎 ≤ 𝒀𝟐(𝒑𝒓) ≤ 𝟏 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒕𝒉𝒂𝒕 

 𝟎 ≤ 𝒀𝟐(𝒚𝟑) ≤ 𝟏, 𝟎 ≤ 𝒀𝟐(𝒚𝟒) ≤ 𝟏, 𝟎 ≤ 𝒀𝟐(𝒚𝟓) ≤ 𝟏, 𝟎 ≤ 𝒀𝟐(𝒚𝟔) ≤ 𝟏,

𝟎 ≤ 𝒀𝟐(𝒚𝟕) ≤ 𝟏.  𝑨𝒏𝒅 𝒕𝒉𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒀𝟐(𝒊) ≤ 𝒀𝟏(𝒊)  𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒕𝒉𝒂𝒕  

𝒀𝟐(𝒚𝟏) ≤ 𝟏, 𝒀𝟐(𝒚𝟐) ≤ 𝟏, 𝒀𝟐(𝒚𝟑) ≤ 𝟎, 𝒀𝟐(𝒚𝟒) ≤ 𝟏,

𝒀𝟐(𝒚𝟓) ≤ 𝟎,𝒀𝟐(𝒚𝟔) ≤ 𝟎, 𝒀𝟐(𝒚𝟕) ≤ 𝟎
 𝒊𝒇 𝒚𝟏 = 𝟏 𝒂𝒏𝒅 𝒚𝟐 = 𝟎 →  𝒚𝟑 = 𝟏, 𝒚𝟒 = 𝟎,𝒚𝟓 = 𝟏, 𝒚𝟔 = 𝒚𝟕 = 𝟎    

𝒐 𝒚𝟔 = 𝒚𝟕 = 𝟏 𝒃𝒖𝒕 𝒚𝟑 = 𝟎  𝒃𝒆𝒄𝒂𝒖𝒔𝒆  𝒀𝟐(𝒚𝟑) ≤ 𝟎   

 

      

(6) 

 

Thus, this value (6) does not fulfill that -y1+y2+y3=0 so Y
T

2 = 

{} then pi, pk are in the same minimal P-semiflow and the 

siphon Sti= {p2, p1} is formed. Now LPP1 is executed to 

choose the following place pi=p3. For LPP1: 
𝐹𝑜𝑟 𝑝𝑖 ≠ 𝑝𝑘 , 𝑝𝑖 = 𝑝3 𝑎𝑛𝑑 𝑝𝑘 = 𝑝2, 𝑌1(𝑦2) = 1 𝑎𝑛𝑑 𝑌1(𝑦3) = 1.

𝑇ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 0 ≤ 𝑌1(𝑝𝑟) ≤ 1, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  0 ≤ 𝑌1(𝑦1) ≤ 1,

 0 ≤ 𝑌1(𝑦4) ≤ 1,0 ≤ 𝑌1(𝑦5) ≤ 1,   0 ≤ 𝑌1(𝑦6) ≤ 1, 0 ≤ 𝑌1(𝑦7) ≤ 1.
𝐼𝑓 𝑦3 = 𝑦2 = 1 → 𝑦1 = 2, 𝑦4 = 1, 𝑎𝑛𝑑 𝑦5 = 1,

 𝑖𝑓 𝑦6 = 0 → 𝑦7 = 0  𝑏𝑢𝑡  𝑦1 = 2  𝑛𝑜𝑡 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑠  0 ≤ 𝑌1(𝑦1) ≤ 1  
 

    (7) 

 

Therefore, there is not a solution (7) then Y
T

1={} then pi, pk 

are in different minimal P-semiflow. Now, LPP1 is executed 

to choose the following place pi=p4. For LPP1: 
𝑭𝒐𝒓 𝒑𝒊 ≠ 𝒑𝒌, 𝒑𝒊 = 𝒑𝟒 𝒂𝒏𝒅 𝒑𝒌 = 𝒑𝟐, 𝒀𝟏(𝒚𝟐) = 𝟏 𝒂𝒏𝒅 𝒀𝟏(𝒚𝟒) = 𝟏.

𝑻𝒉𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟎 ≤ 𝒀𝟏(𝒑𝒓) ≤ 𝟏, 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒕𝒉𝒂𝒕  𝟎 ≤ 𝒀𝟏(𝒚𝟏) ≤ 𝟏,

 𝟎 ≤ 𝒀𝟏(𝒚𝟒) ≤ 𝟏, 𝟎 ≤ 𝒀𝟏(𝒚𝟓) ≤ 𝟏,   𝟎 ≤ 𝒀𝟏(𝒚𝟔) ≤ 𝟏, 𝟎 ≤ 𝒀𝟏(𝒚𝟕) ≤ 𝟏.
𝑰𝒇 𝒚𝟒 = 𝒚𝟐 = 𝟏 → 𝒚𝟑 = 𝟎,𝒚𝟏 = 𝟏, 𝒚𝟓 = 𝟎, 𝒊𝒇 𝒚𝟔 = 𝟎 → 𝒚𝟕 = 𝟎 

  𝒕𝒉𝒆𝒏 𝒀𝟏
𝑻 = [𝟏𝟏𝟎𝟏𝟎𝟎𝟎] 𝒂𝒏𝒅   

𝒚𝟏 + 𝒚𝟐 + 𝒚𝟑 + 𝒚𝟒 + 𝒚𝟓 + 𝒚𝟔 + 𝒚𝟕 = 𝟑  𝒊. 𝒆 𝒕𝒉𝒆𝒓𝒆 𝒆𝒙𝒊𝒔𝒕 𝒂 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏.  

      

(8) 

 

Then pi, pk are in the same minimal P-semiflow or they are in 

two different minimal P-semiflow (8). Now LPP2 will 

determine which the case is.  After executing the LPP2 the 

value does not fulfill that -y2+y4=0 so Y
T

2 = {} then pi, pk are 

in the same minimal P-semiflow and the siphon Sti= {p2p1p4} 

is formed. Again, the LPP1 is executed to choose the 

following place pi=p5 and there is not a solution then Y
T

1= {} 

then pi, pk are in different minimal P-semiflow. Again, LPP1 is 
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executed to choose the following place pi=p6 and pi, pk are in 

the same minimal P-semiflow or they are in two different 

minimal P-semiflow.  After, the LPP2 is executed to determine 

which the case is. Then pi,pk are in the same minimal P-

semiflow or they are in two different minimal P-semiflow and 

again LPP2 is executed. Thus, then pi,pk are in different 

minimal P-semiflow and the LPP1 is executed to choose the 

following place pi=p7. All the places were analyzed then go to 

end for. Then Sti= {p2p1p4} Do T
ti
= •Sti∪ Sti•= {t1t2t4}. 

 

Then, in cycle For LPP3 the objective function is: 

𝑀𝑎𝑥 ∑ 𝑌1(𝑖) = 𝑀𝑖𝑛 (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7)
⌈7⌉
𝑖=1   𝑤ℎ𝑒𝑟𝑒

𝐶 =

|

|

−1 0 0 1 0
1 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 −1 1
0 0 0 1 −1

|

|

 , 𝑋1 = ||

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

|| ,

 −𝑥1 + 𝑥4 = 0
𝑥1 − 𝑥2 = 0   
𝑥1 − 𝑥3 = 0 
𝑥2 − 𝑥4 = 0

𝑥3 − 𝑥4 = 0 
−𝑥4 + 𝑥5 = 0
𝑥4 − 𝑥5 = 0

      

, 𝑍 = |
|

1
1
0
1
0

|
| 

       (9) 

𝑻𝒉𝒆𝒏 𝒙𝟏 = 𝒙𝟐 = 𝒙𝟒 = 𝒙𝟑  𝒂𝒏𝒅  𝒙𝟒 = 𝒙𝟓 .

𝑻𝒉𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟎 ≤ 𝑿(𝒉) ≤ 𝟏, 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒕𝒉𝒂𝒕  𝟎 ≤ 𝒙𝟏 ≤ 𝟏,
 𝟎 ≤ 𝒙𝟐 ≤ 𝟏, 𝟎 ≤ 𝒙𝟑 ≤ 𝟏,   𝟎 ≤ 𝒙𝟒 ≤ 𝟏, 𝟎 ≤ 𝒙𝟓 ≤ 𝟏.

𝒂𝒏𝒅 𝒕𝒉𝒆 𝒍𝒂𝒔𝒕 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒊𝒔 𝒀𝟐(𝒑𝒌) = 𝟎.

𝑻𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒊𝒔 𝑿 = [𝟎𝟎𝟎𝟎𝟎].  

 

 

Since X is not empty because x1+x2+x4=0 and X′Z=0 then 

according to the LPP3 in [10] this implies the IPN is not 

diagnosable. However, it is noticed that with the condition 

given above, for this IPN, X always will have a solution 

because x1=x4=x2=x3 and x4=x5, and x1+x2+x4=0. Since X 

cannot be negative, the only possible result is that 

x1=x4=x2=x3= x5=0, i.e., X= [00000]. The proposal in [10] 

states that X must be empty when the IPN is diagnosable, but 

X cannot be empty with the conditions given x1+x2+x4=0 and   

x1=x4=x2=x3=0, so X has a solution and the solution is equal 

to the zero vector. Thus, if X has a solution and this solution 

is zero vector X= [00000] then ti will be diagnosable. This is 

considered in the implementation section. Furthermore, the 

condition Y2(pk)=0 is no necessity in the LPP3 because is 

maintained when is used the LPP2. 

 

4.3. Implementation 
The algorithm is divided into two parts; the first part 

(DiagFaultTi1) contains the algorithms LPP1 and LPP2 that 

determine if there exist a siphon that cannot be marked when 

a fault occurs: 

> DiagFaultTi1≔proc(C,pk,k,au)                                                             
#The numbers of columns and rows from C is calculated                 
>colc≔ linalg:-coldim(C): rowc:+linalg:-rowdim(C)                        
#The P-semiflow vector Y1 and Y2 is definted                                      
>Y1y≔Vector[linalg:-row](rowc,0);                                                        
>for i to rowc do Aux1≔cat(y,i); Y1y[i]≔Aux11 end do;                 
>Y1y; Y2y≔Y1y;                                                                                             
# The objective function of LPP1 and LPP2 is definited                        
>Calobi1 ≔ linalg:-vector(rowc, 0); Y1ecv≔{}; Y2ecv≔{} end do  

>print ("Siphon that not will be market when a fault occurs"); print (Sti);
# The P-semiflow and the Sti is calculated                                              
>P≔Vector[linalg:-row](rowc,0)                                                               
> for i to rowc do aux2≔cat(p,i); P[i]≔aux2 end do; P; Sti≔{pk}   
# The conditions s.t. from the objective funtion are calculated         
>Cond1≔'union'('union'('union'(Y1e0,Y1ecv),{Y1a[k]}),{Y1a[i]});
>Y1≔minimize(Obj1,Cond1,NONNEGATIVE);                                        

>Cond2≔'union'('union'('union'(Y2e0,Y2ecv),{Y2a[k]}),{Y2a[i]});
# the objetive function of  LPP2 is calculated                                            
>Y2≔minimize(Obj2,Cond2,NONNEGATIVE);                                       
if Y2={} the Sti≔'union'(Sti,{pj}) else Y2t≔table(Y2);                          

Y2ms≔convert(Y2t, multiset); Y1ecv≔{}; Y2ecv≔{} end do             

>print ("Siphon that not will be market when a fault occurs"); print (Sti);

 

 

The second algorithm (DiagnFaultTi2) contains the algorithm 

LPP3 that determine if the net is diagnosable with the output 

of the first algorithm: 
> DiagFaultTi2≔proc(C,Ttiv,num,au)                                                              
>colc≔ coldim(C);X1x≔Vector(colc,0);X1vc≔Transpose(X1x);            

>for i to colc do Aux2≔cat(x,i); X1x[i]≔Aux2 end do;                                
>X1e≔multiply(C,X1x); X1e0≔equate(X1e,0); X1ecv≔{};                       
>CalobjX1≔vector(colc,0); for i to colc do CalobjX1[i]≔X1x[i] end do;
>ObjX1≔multiply(M,CalobjX1);  X1T≔Transpose(X1x);                         

>Z≔Vector(colc,0); T: =Vector [row](colc,0);                                             

 

 
>for j to colc do aux3≔cat(t,j); T[j]≔aux3 end do; Tti≔{};                      
>for j to num do for i to colc do if Ttiv[j]=T[i] then Z[i]≔1 end if         
> end do end do;                                                                                                    
>CondX1≔ ('union'('union'(X1e0,X1ecv),{X1TZe0});                               
> X1≔maximize(ObjX1,CondX1,NONNEGATIVE);                                     
>NZ≔ArrayNumElems (X1aa,NonZero);                                                       
>if NZ=0 then print("The fault is Diagnosable") else                                     
> print ("The fault is No diagnosable") end if  end proc                                

 

 

5. CONCLUSIONS  
The definition, analysis and the implementation of the 

algorithm proposed by [10] to detect faults was presented. It 

can be observed that the condition to apply the algorithm to 

diagnose the IPN is that X cannot be empty, and the solution 

must be zero vectors to the fault ti can be diagnosed. 

In the future, is considered that these three algorithms can be 

executed together, integrating the LPPS presented. Also, will 

be explored the possibility of its implementation in a 

Programmable Logic Circuit that can be embedded in a DES. 
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