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RESUMEN 
La variabilidad de la frecuencia cardiaca (VFC) y la 

amplitud respiratoria (AR) son señales fisiológicas 

ampliamente utilizadas en la investigación científica. Para 

analizar estas señales existen programas comerciales que 

evalúan solamente la VFC, y para la AR los investigadores 

generan sus propios programas. El objetivo fue diseñar y 

desarrollar un programa de computadora para análisis del 

acoplamiento cardio-respiratorio, a través de la medición de 

la VFC y de la medición de la AR, la estimación de los 

espectros de potencia de cada una de las señales (VFC y AR) 

y su coherencia espectral. Se diseñó una interfaz que 

permite corregir automática y manualmente los errores de 

la detección de latidos (VFC) e inicio de la inspiración (AR) 

y calcular índices cuantitativos. El desempeño del programa 

se evaluó en datos de pacientes durante respiración 

espontánea y controlada. La interfaz permite estimar el 

acoplamiento cardio-respiratorio a usuarios no expertos. 

Palabras clave: Procesamiento de señales, análisis espectral 

de potencia, desarrollo de programas de cómputo, 

movimientos ventilatorios, variabilidad de la frecuencia 

cardiaca.      
 

ABSTRACT 
Heart rate variability (HRV) and respiratory amplitude 

(RA) are two physiological signals widely used for scientific 

research. Analysis of these signals with commercial 

computer programs includes only HRV analysis and 

researchers develop their own programs for RA assessment. 

The aim was to design and develop a computer program for 

the analysis of cardiorespiratory coupling through the 

estimation of power spectrum of each signal (HRV and RA) 

as well as their spectral coherence. A graphical user 

interface was designed to allow automatic and manual 

correction of each beat (HRV) and inspiratory onset (RA), 

and to calculate standard quantitative indexes. Performance 

of this program was tested with data from patients during 

spontaneous and controlled breathing. The interface allows 

assessment of cardiorespiratory coupling to non-expert 

users.   

Keywords: Signal processing, power spectral analysis, 

computer programs development, ventilator movements, 

heart rate variability 

      

1. INTRODUCTION 
   Cardiovascular diseases are the main mortality cause 

worldwide [1], and there is great interest in methods for 

monitoring and diagnosis of cardiovascular health. The 

electrocardiogram (ECG) is an important physiological 

signal that allows identification of the occurrence of each 

heartbeat (usually in the R-wave) and the estimation of 

the time between consecutive heartbeats (RR interval). 

The beat-to-beat variations in the RR interval is known as 

heart rate variability (HRV) [2]. HRV analysis is used 

widely in scientific research [2]. HRV results from the 

modulation of the brain upon the heart’s pacemaker, 

through the autonomic nervous system [2], but it has also 

influence of the quasi-periodic movements from 

respiration (breathing movements), a phenomenon 

known as respiratory sinus arrhythmia [3]. There are 

many methods for the analysis of HRV and the breathing 

movements amplitude, or respiratory amplitude (RA), 

including statistical and spectral methods [2, 3]. 

  Some commercial systems created for clinical use 

include HRV analysis. However, most programs for HRV 

analysis created for research are custom-made. There are 

also some open-access programs for HRV analysis, 

including Physionet  (https://www.physionet.or 

g/physiotools/software-index.shtml), Kubios HRV 

(https://www.kubios.com/), ARTiiFact 

(http://www.artiifact.de/) and PhysioZoo 

(https://physiozoo.com/). The main limitation of these 

programs is that they only allow HRV analysis, or they 

include only simple estimations of the mean breathing 

frequency. The analysis of the respiratory signal and the 

cardiorespiratory interaction is usually performed with 

custom-made program developed by the researchers.  

   The aim of this work was to design and develop a 

computer program and graphical user interface for the 

analysis of cardiorespiratory coupling through the 

estimation of power spectrum of each signal (HRV and 

RA) as well as their spectral coherence. The signal 
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processing methods were selected based on previous 

research [4–7] and international recommendations [2, 3]. 

2. MATERIALS AND METHODS 
 
2.1. Data and annotations 
Data from healthy subjects and renal patients 
   Data from healthy volunteers and patients with end-

stage renal disease (ESRD) were obtained (Table 1).    

 

Table 1 Characteristics from participants. Data are shown 

as median (percentile 25 – percentile 75) or absolute 

value (percentage). 

 Healthy 

(N = 12) 

ESRD 

(N = 10) 

 

p 

Age (years) 41 (31 – 45) 31 (25 – 41) 0.314 

Sex 

   Female 

   Male 

 

4 (33%) 

8 (67%) 

 

6 (60%) 

4 (40%) 

0.206 

 

   Data from subjects were obtained with a device 

BioHarness 3.0 (Zephyr, TM) which records an ECG 

channel at 250 samples per second and a RA channel at 1 

sample per second, both with an analog-to-digital 

converter resolution of 12 bits. The data was transferred 

to the computer by USB and data files were saved with 

CSV format.  

   From each participant, recordings were obtain with the 

following protocol: 10 minutes during resting (supine 

position) and spontaneous breathing, 10 minutes during 

active standing, 10 minutes in supine position (with 2 

minutes of spontaneous breathing followed by 3 minutes 

with controlled periodic breathing at 0.1 Hz, then 3 

minutes with controlled periodic breathing at 0.25 Hz, 

and 2 last minutes with spontaneous breathing). The app 

Breathe (developed for Android by Jatra, email 

apps@jatra.co.uk) was used as a visual guide to help the 

subjects to follow the controlled breathing pattern. 

 

   Each recording was processed with an algorithm to 

detect QRS complexes in the ECG (to identify each 

heartbeat) and an algorithm to identify the onset of each 

respiratory cycle in the RA signal. Detection of these 

events was supervised by and expert to obtain a set of 

fiducial points for each heartbeat and respiratory cycle, 

these supervised annotations were considered the gold 

standard to be compared with the automatic detection. 

    

Simulated data 

    A set of synthetic ECG signals were generated with the 

function “ecgsyn” [8]. Each simulated ECG had 250 

samples per second, a mean heart rate of 60 beats per 

minute and a total of 100 heartbeats. The function 

produced a vector with the occurrence time of each QRS, 

which was used as gold standard to compare the 

automatic QRS detection applied to the simulated ECG 

with additive noise. The additive noise included: 

a) White noise, which was obtained with the 

function “rand” with amplitude values within 

the interval [a,-a]. 

b) A sinus function with frequency of 60 Hz and 

amplitude = 0.5*a. 

    The amplitude of this additive noise was incremented 

gradually during 100 iterations from an initial amplitude 

of noise = 0 until a final maximum amplitude of noise = 

1.4 the root-mean-square value (RMS) of the simulated 

ECG, or RMS(ECG).  

   For each iteration, the relationship between the 

amplitude of the additive noise and the ECG was 

estimated as the RMS ratio = RMS(noise)/RMS(ECG). 

 

2.2. ECG and AR signals processing 
 Peak detection algorithms 

   QRS complex identification in the ECG was performed 

with a second-derivative algorithm that was validated 

previously [4,7]. The ECG signal was rectified, and a 

threshold value was calculated to identify each QRS 

complex.  Then, the time between each QRS complex was 

measured, to obtain the RR interval or HRV signal. After 

the automatic detection was performed, the user interface 

allows manual correction of the heartbeat detection. 

Additionally, the user has the option to apply a well-

known adaptive filter to identify and correct 

automatically RR intervals from non-normal beats (i.e. 

arrhythmias or artifacts) [9]. 

   In the RA signal a bandwidth FIR filter with cut-off 

frequencies between 0.1 and 0.35 Hz was applied before 

using MATLAB function “peaks” to identify the onset of 

each respiratory cycle (or inspiration, “I”). Then, the time 

between consecutive inspiration time was calculated to 

obtain the I-I intervals. The user interface allows manual 

correction of the “I” events detection. 

 

 Performance tests of peak detection 

   The performance of the automated detection in QRS 

complexes was tested on data from all participants (Table 

1) by comparison of the supervised annotations (gold 

standard) versus the automated QRS detection. 

   The performance of the automated detection in QRS 

complexes was also tested on the simulated data, by 

comparison of the QRS time produced by the ecgsyn 

function (gold standard) versus de automated QRS 

detection applied to each simulated ECG with additive 

noise. 

   The automated QRS detection was compared against 

the reference QRS annotations (or gold standard) to 

determine false positives (fp), false negatives (fn) and 
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true positives (tp). Then we calculated the following 

algorithm performance statistics [10]: 

Sensitivity (Se) = tp/(tp+fn)                                 (1) 

 

Positive predictive value (PPV) = tp/(tp+fp)       (2) 

 

And the overall detection accuracy (ODA), defined as: 

ODA = 2*(PPV*Se/(PPV+Se))                           (3) 

 

2.3 Heart rate variability (HRV) analysis 
   All the HRV indexes were calculated in accordance 

with the international recommendations [2].  

   The developed interface calculates the following time 

domain HRV indexes: mean value of all RR intervals 

(AvRR), standard deviation of the RR intervals (RRSD), 

root-mean-squared of the successive differences between 

RR intervals (RMSSD) and the percentage of successive 

RR intervals with difference greater than 20 ms (pNN20). 

   The time domain indexes obtained from the I-I intervals 

were: mean time between breathing cycles, or breath-to-

breath intervals (AvBB), the standard deviation between 

breathing cycles (BBSD), and the root-mean-squared of 

the successive differences between breathing cycles 

(BMSSD). 

   The frequency domain analysis of both HRV and RA 

time series underwent the following steps: (a) elimination 

of linear trend, (b) re-sampling each time series at 5 

samples per second, (c) application of a Hanning window, 

and (d) estimation of the power spectrum density with the 

Welch method. 

   From the estimated power spectrum density of HRV, 

the following spectral HRV indexes were obtained: the 

low frequency index (LF, from 0.04 to 0.15 Hz), high 

frequency index (HF, from 0.15 to 0.4 Hz), and LF/HF 

ratio. LF and HF were calculated in mean power units 

(ms2) and normalized units (n.u.) [2]. 

  To test the estimation of the HRV indices, the median 

value of all HRV indices were compared between the 

group of healthy subjects and the group of ESRD patients, 

using a Mann-Whitney U test. Also, the effect of a 

physiological stimulus (active standing) upon the spectral 

HRV indices was tested by comparing the median values 

of each spectral HRV index between supine position and 

active standing (within each group, Wilcoxon’s rank test).  

 

2.4 Spectral coherence analysis 
   The estimation of the spectral coherence was performed 

with the same steps described to estimate the power 

spectrum densities of HRV and AR (section 2.3).  

   The spectral coherence was obtained with the 

MATLAB function “mscoherence”. 

3 RESULTS AND DISCUSSION 

 

3.1 Peaks detection 
   The performance of the QRS detection algorithm in 

ECG recordings from the participants of the study is 

shown in Table 2. The algorithm showed very good 

performance with more than 98% in the three 

performance statistics (Se, PPV and ODA).   

 

Table 2 Performance of QRS detection algorithm in 

recordings from 12 healthy volunteers and 10 ESRD 

patients. 

Group Se PPV ODA 

Healthy 98.6% 98.8% 98.7% 

ERCT 98.8% 99.8% 99.3% 

 

   Performance of peak detection in the simulated ECG 

signals with additive noise are shown in Figure 1. A very 

good performance of the peak detection algorithm was 

shown with the three performance statistics above 90% 

for all tests with RMS ratio ≤ 0.8. 

 
Figure 1 Performance of QRS detection algorithm in 100 

tests with simulated ECG and additive noise. Black lines 

= individual tests, red line = mean from all tests. 
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3.2 HRV indexes estimation 

   Compared with the healthy subjects, ESRD patients 

during supine position had shorter AvRR (i.e. faster heart 

rate), lower short-term variability (smaller RMSSD and 

pNN20), larger LF and LF/HF and smaller HF.  

    

Table 3 HRV indexes. Data is shown as median 

(percentile 25 – percentile 75). 

 Healthy 

(N = 12) 

ESRD 

(N = 10) 

p 

Supine position 

AvRR (s) 0.9 (0.8 – 1.0) 0.7 (0.6 – 0.9) 0.02 

RRSD (ms) 107 (92 – 143) 109 (61 – 119) 0.49 

RMSSD(ms) 61 (48 – 76) 15 (10 – 22) <0.01 

pNN20 (%) 53 (46 – 61) 13 (5 – 25) <0.01 

LF (n.u.) 44 (32 – 61) 68 (38 – 80) 0.05 

HF (n.u.) 56 (41 – 68) 35 (20 – 62) 0.05 

LF/HF 0.8 (0.5 – 1.5) 1.9 (0.6 – 4.0) 0.04 

Active standing 

LF (n.u.) 82 (71 – 87) * 77 (54 – 83) 0.23 

HF (n.u.) 20 (14 – 29) * 25 (20 – 47) 0.09 

LF/HF 4.3 (2.5 – 6.3) * 3.2 (1.1 – 4.1) 0.09 

* p < 0.01 compared to supine position 

 These differences are consistent with larger sympathetic 

nervous system predominance in the ESRD patients 

compared to healthy controls [6]. 

 

  In response to active standing, the healthy groups had 

increased LF and LF/HF. This indicate an increment of 

the sympathetic nervous system activity (LF) and 

decrement of the parasympathetic nervous system 

activity (HF) with predominant sympathetic activity 

(higher LF/HF) in response to active standing [6]. 

 

3.3 Spectral coherence analysis 
   Results of the spectral coherence analysis between 

HRV and RA of 12 healthy volunteers during 

spontaneous respiration showed a highly disperse 

coherence in all frequencies (Figure 2, upper panel). In 

contrast, during controlled breathing at 0.1 Hz (middle 

panel) and 0.25 Hz (lower panel), coherence was very 

high with low dispersion in their respective breathing 

frequencies. This shows an expected increase in 

cardiorespiratory interaction induced by controlled 

breathing [11]. 

 

 
Figure 2 Results of the spectral coherence analysis between HRV and AR in 12 healthy subjects during spontaneous 

breathing (upper panel), controlled breathing at 0.1 Hz (middle panel) and controlled breathing at 0.25 Hz (lower 

panel). All recordings were obtained during supine position. 
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3.4 Graphical user interface 

   Figure 3 shows the screen presentation of the graphical 

user interface. The control bars are located at the left side 

and include options to load ECG and RA files, to apply 

the peak detector algorithms, to apply the adaptive filter 

for automatic identification and substitution of non-

normal heartbeats in HRV (“Extrasystoles filter”), and 

the options to select a window size for spectral analysis.  

   The interface shows plots of the following signals as a 

function of time: ECG, RR interval (HRV), RA signal, I-

I interval (BB interval) and RA at each I peak (Max RA).  

The bottom plots correspond to the power spectrum 

density of the RR intervals and the AR signal (bottom 

left) and the corresponding spectral coherence (bottom 

right).  

  In the example of Figure 3, the green shadows indicate 

a segment of HRV and AR time series which include a 

part with periodic breathing at 0.1 Hz followed by 

periodic breathing at 0.25 Hz. The power spectral 

densities and spectral coherence spectrum show correct 

identification of the harmonic components in both 

frequencies. 

    The graphical user interface includes the option “File” 

in the menu bar which allows the user to save the 

processed data (including HRV and I-I time series) in 

files with CSV format. 

 

4 CONCLUSIONS 

   The developed computer program allows the analysis 

of cardiorespiratory coupling through the assessment of 

spectral coherence between HRV and RA.  

   The program includes a reliable automatic algorithm for 

peaks detection to obtain HRV and I-I time series, which 

can be retrieved from CSV files for further use with other 

methods. 

   The graphical user interface includes useful options 

such as interactive manual correction of the identified 

peaks, which allows the study of respiratory coupling to 

non-expert users. 
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Figure 3 Example of the graphical user interface. The shadow indicates the window selected for the spectral analysis 

and spectral coherence, which includes a part with periodic breathing at 0.1 Hz followed by a part of periodic breathing 

at 0.25 Hz.  
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